Cloning and overexpression of Zea mays cystatin 2 (ccii) gene in Bacillus subtilis to reduce root-knot nematode infection in cucumber plants in Iraq

Mohammed Abbas, Shurook Saadedin, Ahmed Suleiman

Abstract


Root-knot nematodes significantly reduce cucumber yields, prompting the development of a genetic engineering strategy as an alternative to chemical nematicides. In this study, the maize CCII gene was cloned into the pHT1469 shuttle vector and transformed into the Bacillus subtilis expression system to produce a cystatin that interferes with nematode digestive proteins. The full-length CCII cDNA sequence was optimized for overexpression in B. subtilis, driven by the Pgrac promoter, resulting in a protein of 134 amino acids with a deduced molecular mass of 15.01 kDa. After optimization, the relative adaptiveness in the heterologous B. subtilis system improved by 6.72% compared to non-optimized codons. Purification results using immobilized metal affinity chromatography (IMAC) indicated that the third fraction exhibited the highest inhibition activity, and the purified cystatin was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to be approximately 15 kDa. Treatments with nematode juveniles showed the highest mortality percentages at 30% and 40% concentrations of purified cystatin isolated from both competent and wild B. subtilis cells, yielding mortality rates of 65%, 73.7%, 75.3%, and 89% respectively after 72 h. Furthermore, the recombinant cystatin isolated from the first B. subtilis (wild) strain had a greater impact on juvenile mortality than the second strain. This study aimed to clone and express corn cystatin in heterologous B. subtilis and evaluate its effectiveness in reducing nematode populations, exploring its potential as a biocontrol agent.

Keywords


Cystatin 2 (CCII), Bacillus subtilis, Root-knot nematode, maize, Cucumber, Biocontrol

Full Text:

PDF

References


Abd, F.N., Luti, K.J.K., 2017. Detection, purification and characterization of a bacteriocin produced by Bacillus subtilis NK16 exhibits a significant antimicrobial activity against clinical Staphylococcus spp. Baghdad Science Journal 14(3), 0524-0524.

Abd-Elgawad, M.M., Askary, T.H., 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian journal of biological pest control, 28(1), 1-24.

Abdulhussein, Z.M., Hussein, A.A., 2022. Isolation and identification of anthracene degrading bacteria isolated from polluted soil in Iraq. Iraqi Journal of Biotechnology 21(2), 236-244.

Afzal, A., Mukhtar, T., 2024. Revolutionizing nematode management to achieve global food security goals - An overview. Heliyon 10, e25325. https://doi.org/10.1016/j.heliyon.2024.e25325

Al-Amery, L.K.J., Annon, A.H., 2024. Effect of different levels of salt and drought stresses on gene expression of two tolerance-different tomato cultivars in vitro. Iraqi Journal of Agricultural Sciences 55(2), 795-802.

Ali, M.A., Azeem, F., Abbas, A., Joyia, F.A., Li, H., Dababat, A.A., 2017. Transgenic strategies for enhancement of nematode resistance in plants. Frontiers in Plant Science, 8, 750.

Aljuboori, F. K., Ibrahim, B.Y., Mohamed, A.H., 2022. Biological control of the complex disease of Rhizoctonia solani and root-knot nematode Meloidogyne javanica on chickpea by Glomus spp. and Pseudomonas sp. Iraqi Journal of Agricultural Sciences 53(3), 669-676.

Alrikabi, M.H., 2023. Investigation of IL-23, IL-17 and calprotectin levels in blood of Iraqi patients with ulcerative colitis. Iraqi Journal of Biotechnology 22(1).

Andrade, L.B.D.S., Oliveira, A.S., Ribeiro, J.K., Kiyota, S., Vasconcelos, I.M., de Oliveira, J.T.A., De Sales, M.P., 2010. Effects of a novel pathogenesis-related class 10 (PR-10) protein from Crotalaria pallida roots with papain inhibitory activity against root-knot nematode Meloidogyne incognita. Journal of Agricultural and Food Chemistry 58(7), 4145-4152.

Azeem, W., Mukhtar, T., Hamid, T., 2021. Evaluation of Trichoderma harzianum and Azadirachta indica in the management of Meloidogyne incognita in Tomato. Pakistan Journal of Zoology 53(1), 119-125.

Aziz, S., Jamshed, S.A., Mukhtar, T., Irshad, G., Ijaz, S.S., Raja, M.U., 2024. Evaluation of Bacillus spp. as biocontrol agents against chili leaf spot caused by Xanthomonas vesicatoria. Journal of Plant Diseases and Protection 131, 987-997.

Bijina, B., Chellappan, S., Krishna, J.G., Basheer, S.M., Elyas, K.K., Bahkali, A.H., Chandrasekaran, M., 2011. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative. Saudi Journal of Biological Sciences 18(3), 273-281.

Brooks, F.E., 2004. Plant-parasitic nematodes of banana in American Samoa. Nematropica 65-72.

Cervantes‐Juan, M.M., Ibarra, J.E., Olalde‐Portugal, V., Manzo‐Valencia, M.K., Meraz Mercado, M.A., Valdes‐Rodriguez, S., 2023. Nematicidal effect of an Amaranthus hypochondriacus L. cystatin (AhCPI) on the root‐knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. Annals of Applied Biology 183(3), 244-253.

Couto, M.R., Rodrigues, J.L., Rodrigues, L.R., 2021. Cloning, expression and characterization of UDP-glucose dehydrogenases. Life 11(11), 1201.

Fuller, V.L., Lilley, C.J., Urwin, P.E., 2008. Nematode resistance. New Phytologist 180(1), 27-44.

Gulzar, A., Mukhtar, T., Wright, D.J., 2020. Effects of entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora on the fitness of a Vip3A resistant subpopulation of Heliothis virescens (Noctuidae: Lepidoptera). Bragantia 79(2), 281-292.

Gutierrez-Campos, R., Torres-Acosta, J.A., Saucedo-Arias, L.J., Gomez-Lim, M.A., 1999. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nature Biotechnology 17(12), 1223-1226.

Hadri, S.H., Asad, M.J., Hyder, M.Z., Naqvi, S.M.S., Mukhtar, T., Zafar, M., Shah, S.H., Mehmood, R.T., David Wu J.H., 2019. Characterization of a novel thermophilic endopolygalacturonase produced by Bacillus licheniformisIEB-8. BioResources 14(2), 2873-2884.

Hallmann, J., Davies, K.G., Sikora, R., 2009. Biological control using microbial pathogens, endophytes and antagonists. In Root-knot nematodes, 380-411.

Haq, M.A., Mukhtar, T., Haq, M.I., Khalid, A., 2022. Reproduction of root-knot nematode, Meloidogyne incognita, on Solanum melongena genotypes determines their host status. Pakistan Journal of Zoology 54(5) 2097-2103.

Haridhasapavalan, K.K., Sundaravadivelu, P.K., Thummer, R.P., 2020. Codon optimization, cloning, expression, purification, and secondary structure determination of human ETS2 transcription factor. Molecular Biotechnology 62(10), 485-494.

Jimenez-Aguirre, M.A., Padilla-Hurtado, B.E., Gonzalez-Cardona, C., Ceballos-Aguirre, N., Cardona-Agudelo, L.D., Montoya-Estrada, C.N., 2023. Antagonist effect of native bacteria of the genus Bacillus on the root-knot nematode (Meloidogyne spp.) in tomato germplasm. Chilean Journal of Agricultural Research 83(5), 565-576.

Kang, I.S., Wang, J.J., Shih, J.C., Lanier, T.C., 2004. Extracellular production of a functional soy cystatin by Bacillus subtilis. Journal of Agricultural and Food Chemistry 52(16), 5052-5056.

Kepenekci, I., Erdogus, D., Erdogan, P., 2016. Effects of some plant extracts on root-knot nematodes in vitro and in vivo conditions. Turkish Journal of Entomology, 40(1).

Kim, E., Kim, Y., Yeam, I., Kim, Y., 2016. Transgenic expression of a viral cystatin gene CpBV-CST1 in tobacco confers insect resistance. Environmental Entomology 45(5), 1322-1331.

Kodackattumannil, P., Sasi, S., Krishnan, S., Lekshmi, G., Kottackal, M., Amiri, K.M., 2023. Protocol for the High-quality plasmid isolation from different recalcitrant bacterial species: Agrobacterium spp., Rhizobium sp., and Bacillus thuringiensis. Bio-Protocol 13(15).

Le, V.D., Phan, T.T.P., Nguyen, T.M., Brunsveld, L., Schumann, W., Nguyen, H.D., 2019. Using the IPTG-inducible Pgrac 212 promoter for overexpression of human Rhinovirus 3C protease fusions in the cytoplasm of Bacillus subtilis cells. Current Microbiology 76, 1477-1486.

Lilley, C.J., Devlin, P., Urwin, P.E., Atkinson, H.J., 1999. Parasitic nematodes, proteinases and transgenic plants. Parasitology Today 15(10), 414-417.

Lilley, C.J., Urwin, P.E., Johnston, K.A., Atkinson, H.J., 2004. Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. Plant Biotechnology Journal 2(1), 3-12.

Lima, A.M., Barros, N.L.F., Freitas, A.C.O., Tavares, L.S.C., Pirovani, C.P., Siqueira, A.S., de Souza, C.R.B., 2020. A new Piper nigrum cysteine proteinase inhibitor, PnCPI, with antifungal activity: Molecular cloning, recombinant expression, functional analyses and molecular modeling. Planta 252, 1-15.

Martinez, M., Abraham, Z., Gambardella, M., Echaide, M., Carbonero, P., Diaz, I., 2005. The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. Journal of Experimental Botany 56(417), 1821-1829.

Mukhtar, T., Kayani, M.Z., 2020. Comparison of the damaging effects of Meloidogyne incognita on a resistant and susceptible cultivar of cucumber. Bragantia 79(1), 83-93.

Mukhtar, T., Tariq-Khan, M., Aslam, M.N., 2021. Bioefficacy of Trichoderma species against Javanese root-knot nematode, Meloidogyne javanica in green gram. Gesunde Pflanzen 73(3), 265-272.

Ng, W., 2021. Protocol for the transformation of Bacillus subtilis through inducing natural competence. Available at SSRN 3819417.

Okay, S., Alshehri, W.A., 2020. Overexpression of chitinase a gene from Serratia marcescens in Bacillus subtilis and characterization of enhanced chitinolytic activity. Brazilian Archives of Biology and Technology, 63.

Papolu, P.K., Dutta, T.K., Tyagi, N., Urwin, P.E., Lilley, C.J., Rao, U., 2016. Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita. Frontiers in Plant Science 7, 1122.

Rafique, N., Bashir, S., Khan, M.Z., Hayat, I., Orts, W., Wong, D.W., 2021. Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain. Plos One 16(12), 0256562.

Ramezani Moghaddam, M., Mahdikhani Moghaddam, E., Baghaee Ravari, S., Rouhani, H., 2014. The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Science and Technology 24(3), 279-290.

Roderick, H., Tripathi, L., Poovarasan, S., 2016. Transgenic approaches to improve resistance to nematodes and weevils. Banana: Genomics and Transgenic Approaches for Genetic Improvement 247-260.

Saad, S., Melconian, A., 2014. Cloning of copper resistance gene (copA) that presence in novel genomic island of Acinetobacter baumannii A92. Iraqi Journal of Science 55(2B), 722-728.

Saeed, M., Mukhtar, T., 2024. Root-knot nematodes (Meloidogyne spp.) infecting peach (Prunus persica L.) in the Pothwar region of Pakistan. Journal of Agricultural Science and Technology 26(4), 897-908.

Saeed, M., Mukhtar, T., Ahmed, R., Ahmad, T., Iqbal, M.A., 2023. Suppression of Meloidogyne javanica infection in peach (Prunus persica (L.) Batsch) using fungal biocontrol agents. Sustainability 15(18), 13833. https://doi.org/10.3390/su151813833

Saeed, M., Mukhtar, T., Haq, M.I., Khan, M.A., 2021. Assessment of nematicidal potential of Cannabis sativa and Azadirachta indica in the management of root-knot nematode (Meloidogyne javanica) on peach. Pakistan Journal of Agricultural Sciences 58(5), 1555-1561.

Souza, C.C.D., Guimaraes, J.M., Pereira, S.D.S., Mariuba, L.A.M., 2021. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Experimental Biology and Medicine 246(23), 2443-2453.

Tran, D.T.M., Phan, T.T.P., Doan, T.T.N., Tran, T.L., Schumann, W., Nguyen, H.D., 2020. Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnology Reports 28, 00540.

Turk, V., Stoka, V., Turk, D., 2008. Cystatins: biochemical and structural properties, and medical relevance. Frontiers in Bioscience 13(1), 5406-5420.

Wang, Y., Xu, D., Liu, D., Sun, X., Chen, Y., Zheng, L., Ma, A., 2019. A rapid and effective colony PCR procedure for screening transformants in several common mushrooms. Mycobiology 47(3), 350-354.

Wang, Y., Zhan, Y., Wu, C., Gong, S., Zhu, N., Chen, S., Li, H., 2012. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Science 191, 93-99.

Xia, Y., Xie, S., Ma, X., Wu, H., Wang, X., Gao, X., 2011. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiology Letters 322(2), 99-107.

Yang, Q., Lyu, X., Zhao, F., Liu, Y., 2021. Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Research 49(2), 818-831.

Yaseen, I., Mukhtar, T., Kim, H.T., Arshad, B., 2023. Quantification of resistance to Melidogyne incognita in okra cultivars using linear and nonlinear analyses of growth parameters and nematode infestations. Bragantia 82, e20230114. https://doi.org/10.1590/1678-4499.20230114

Yaseen, I., Mukhtar, T., Kim, H.-T., Arshad, B., 2024a. Interactive effects of Meloidogyne incognita and Fusarium oxysporum f.sp. vasinfectum on okra cultivars. Bragantia 83, e20230266. https://doi.org/10.1590/1678-4499.20230266

Yaseen, I., Mukhtar, T., Mubarik, A., Arshad, B., Sahu, N., Somaddar, U., 2024b. Management of Ralstonia solanacearum-Meloidogyne incognita complex with Trichoderma harzianum in tomato. Bragantia 83.

Yu, Y., Zhang, G., Li, Z., Cheng, Y., Gao, C., Zeng, L., Chen, J., Yan, L., Sun, X., Guo, L., 2017. Molecular cloning, recombinant expression and antifungal activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes 8(10), 265.

Yu, Z., Xiong, J., Zhou, Q., Luo, H., Hu, S., Xia, L., Yu, Z., 2015. The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. Journal of Invertebrate Pathology 125, 73-80.




DOI: https://doi.org/10.33804/pp.008.04.5335

Refbacks

  • There are currently no refbacks.