In Silico Characterization of Plant Salt Tolerance Promoting KDP Proteins from Alcaligenes xylosoxydans

Fatima Muccee

Abstract


Soil salinity stress is a detrimental factor in crops production. Conventional methods of soil management and reclamation have been proved useless. On the contrary, exploiting the inherent genes and mechanisms of halotolerant bacteria can bring revolution in agriculture. Present study was designed to characterize ATPase dependent protein complexes kdpFABC and kdpDE in a salt tolerant bacterium Alcaligenes xylosoxydans. This complex enables plants to endure the saline environmental conditions through enhancing the K+ ions influx. For characterization, protein sequences of three isoforms of kdpA, four of kdpB, two of kdpC and one of kdpE were retrieved from Uniprot database. These were analyzed via ProtParam tool, AlphaFold protein database and HDOCK server. Highest affinity for ATP molecule was observed in kdpB confirming its reported function of ATP hydrolysis. All documented proteins were found polar (except kdpE), alkaline (except one isoform of each kdpA and kdpB), thermostable, to exhibit complex 3D structure (except for kdpC and E) and in vitro stability. These properties of subunit proteins can be exploited to engineer the complex and produce osmotolerant transgenic plants

Keywords


salinity; Alcaligenes xylosoxydans; halotolerant; kdp complex; encoding

Full Text:

PDF

References


Andrés-Barrao, C., Lafi, F.F., Alam, I., de Zélicourt, A., Eida, A.A., Bokhari, A., Alzubaidy, H., Bajic, V.B., Hirt, H., Saad, M.M., 2017. Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Frontiers in Microbiology 8, 2023.

Asaf, S., Numan, M., Khan, A.L., Al-Harrasi, A., 2020. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology 40, 138-152.

Ashraf, M., Munns, R., 2022. Evolution of approaches to increase the salt tolerance of crops. Critical Reviews in Plant Sciencs 41, 128-160.

Banerjee, S., Nag, S., Tapadar, S., Ghosh, S., Guha, S., Bakshi, S., 2015. Improving protein protein interaction prediction by choosing appropriate physiochemical properties of amino acids. International Conference and Workshop on Computing and Communication (IEMCON): IEEE 1-8.

Barut, D., Enuh, B.M., Derkuş, B., Güler, Ü., Salih, B., Çelik, P.A., 2023. The relationship between bacterial outer membrane vesicles and halophilic adaptation. Molecular Omics Journal 19, 174-181.

Belaouni, H.A., Compant, S., Antonielli, L., Nikolic, B., Zitouni, A., Sessitsch, A., 2022. In-depth genome analysis of Bacillus sp. BH32, a salt stress-tolerant endophyte obtained from a halophyte in a semiarid region. Applied Microbiology and Biotechnology 106, 3113-3137.

Berg, M.C., 2021. Processes and parameters underlying the failure of salt marsh vegetation in different sediments University of Twente.

Bhattacharya, M., Hota, A., Kar, A., Chini, D.S., Malick, R.C., Patra, B.C., Das, B.K., 2018. In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). Journal of Genetic Engineering and Biotechnology 16, 721-730.

Bramkamp, M., Altendorf, K., 2004. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli. Biochemistry 43, 12289-12296.

Carraretto, L., 2013. Functional characterization of AtTPK3 potassium channel of Arabidopsis thaliana.

Chao, D.Y., Luo, Y.H., Shi, M., Luo, D., Lin, H.X., 2005. Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Research 15, 796-810.

Chen, Y., Zhang, Z., Luo, H., Li, Z., 2021. Salt tolerance of halotolerant bacteria from coastal soils and sediments near saltern field of Hainan Island, China. Archives of Microbiology 203, 5921-5930.

Cui, J., Sun, T., Chen, L., Zhang, W., 2020a. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnology Advances 43, 107578.

Cui, J., Sun, T., Li, S., Xie, Y., Song, X., Wang, F., Chen, L., Zhang, W., 2020b. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing Mrp Antiporters. Frontiers in Bioengineering and Biotechnology 8, 500.

Daniells, I.G., Holland, J.F., Young, R.R., Alston, C.L., Bernardi, A.L., 2001. Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Australian Journal of Experimental Agriculture 41, 211-217.

Demidchik, V., Davenport, R.J., Tester, M., 2002. Nonselective cation channels in plants. Annual Review of Plant Biology 53, 67-107.

Dourado, P.R.M., de Souza, E.R., Santos, M.A., Lins, C.M.T., Monteiro, D.R., Paulino, M.K.S.S., Schaffer, B., 2022. Stomatal regulation and osmotic adjustment in sorghum in response to salinity. Agriculture 12, 658.

Dutta, B., Banerjee, A., Chakraborty, P., Bandopadhyay, R., 2018. In silico studies on bacterial xylanase enzyme: Structural and functional insight. Journal of Genetic Engineering and Biotechnology 16, 749-756.

Eida, A.A., Bougouffa, S., L’Haridon, F., Alam, I., Weisskopf, L., Bajic, V.B., Saad, M.M., Hirt, H., 2020. Genome insights of the plant-growth promoting bacterium Cronobacter muytjensii JZ38 with volatile-mediated antagonistic activity against Phytophthora infestans. Frontiers in Microbiology 11, 369.

Etesami, H., Glick, B.R., 2020. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany 178, 104124.

Faisal, M., Faizan, M., Tonny, S.H., Rajput, V.D., Minkina, T., Alatar, A.A., Pathirana, R., 2023. Strigolactone-mediated mitigation of negative effects of salinity stress in Solanum lycopersicum through reducing the oxidative damage. Sustainability 15, 5805.

Gamage, D.G., Gunaratne, A., Periyannan, G.R., Russell, T.G., 2019. Applicability of instability index for in vitro protein stability prediction. Protein and Peptide Letters 26, 339-347.

García, C.J., Alacid, V., Tomás-Barberán, F.A., García, C., Palazón, P., 2022. Untargeted metabolomics to explore the bacteria exo-metabolome related to plant biostimulants. Agronomy 12, 1926.

Gilhar, O., Olender, T., Aharoni, A., Friedman, J., Kolodkin-Gal, I., 2022. Arabidopsis thaliana induces multigenerational stress tolerance against biotic and abiotic stressors and memorization of host colonization in Bacillus subtilis. BioRxiv 2022.2005. 2029.493878.

Girma, B., Panda, A.N., Mohanty, S., Ray, L., Chowdhary, G., 2020. Draft genome sequence of the plant growth-promoting rhizobacterium Klebsiella sp. strain KBG6. 2, imparting salt tolerance to rice. Microbiology Resource Announcements 9(35), 10.1128/mra. 00491-20.

González-Rosales, C., Vergara, E., Dopson, M., Valdés, J.H., Holmes, D.S., 2022. Integrative genomics sheds light on evolutionary forces shaping the acidithiobacillia class acidophilic lifestyle. Frontiers in Microbiology 12, 822229.

Gul, Z., Tang, Z.H., Arif, M., Ye, Z., 2022. An insight into abiotic stress and influx tolerance mechanisms in plants to cope in saline environments. Biology 11, 597.

Gumulya, Y., Boxall, N.J., Khaleque, H.N., Santala, V., Carlson, R.P., Kaksonen, A.H., 2018. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes 9, 116.

Guo, D.J., Singh, R.K., Singh, P., Li, D.P., Sharma, A., Xing, Y.X., Song, X.P., Yang, L.T., Li, Y. R., 2020. Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Frontiers in Microbiology 11, 580081.

Heermann, R., Weber, A., Mayer, B., Ott, M., Hauser, E., Gabriel, G., Pirch, T., Jung, K., 2009. The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress. Journal of Molecular Biology 386, 134-148.

Hernandez-Leon, S.G., Valenzuela-Soto, E.M., 2023. Glycine betaine is a phytohormone-like plant growth and development regulator under stress conditions. Journal of Plant Growth Regulation 42, 5029-5040.

Horváth, I., Multhoff, G., Sonnleitner, A., Vígh, L., 2008. Membrane-associated stress proteins: more than simply chaperones. Biochimica et Biophysica Acta 1778, 1653-1664.

Ikai, A., 1980. Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry 88, 1895-1898.

Iqbal, S., Qasim, M., Rahman, H., Khan, N., Paracha, R.Z., Bhatti, M.F., Javed, A., Janjua, H.A., 2023. Genome mining, antimicrobial and plant growth-promoting potentials of halotolerant Bacillus paralicheniformis ES-1 isolated from salt mine. Molecular Genetics and Genomics 298, 79-93.

Irzik, K., Pfrötzschner, J., Goss, T., Ahnert, F., Haupt, M., Greie, J.C., 2011. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone. The FEBS Journal 278, 3041-3053.

Jana, G.A., Yaish, M.W., 2021. Genome analysis of a salinity adapted Achromobacter xylosoxidans rhizobacteria from the date palm. Rhizosphere 19, 100401.

Kantardjieff, K.A., Rupp, B., 2004. Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20, 2162-2168.

Kashyap, S.P., Kumari, N., Mishra, P., Moharana, D.P., Aamir, M., 2021. Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: perspectives and challenges. Genetics Resources and Crop Evolution 68, 2207-2233.

Kerbab, S., Silini, A., Chenari, Bouket, A., Cherif-Silini, H., Eshelli, M., El Houda, R.N., Belbahri, L., 2021. Mitigation of NaCl stress in wheat by rhizosphere engineering using salt habitat adapted PGPR halotolerant bacteria. Applied Sciences 11, 1034.

Khan, W.D., Tanveer, M., Shaukat, R., Ali, M., Pirdad, F., 2020. An overview of salinity tolerance mechanism in plants. Salt and drought stress tolerance in plants: Signaling Networks and Adaptive Mechanisms 1-16.

Kixmüller, D., 2011. Transcriptional regulation and physiological importance of the kdp-system from the halophilic archaeon Halobacterium salinarum. PhD dissertation, Osnabrück.

Kumari, S., Chhillar, H., Chopra, P., Khanna, R.R., Khan, M.I.R., 2021. Potassium: A track to develop salinity tolerant plants. Plant Physiology and Biochemistry 167, 1011-1023.

Kumawat, K.C., Nagpal, S., Sharma, P., 2022. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere 32, 223-245.

Kunte, H.J., 2005. K+ transport and its role for osmoregulation in a halophilic member of the Bacteria domain: characterization of the K+ uptake systems from Halomonas elongata. Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer 287-300.

Kyte, J., Doolittle, R., 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-132.

Li, T., Mann, R., Kaur, J., Spangenberg, G., Sawbridge, T., 2021. Transcriptome analyses of barley roots inoculated with novel Paenibacillus sp. and Erwinia gerundensis strains reveal beneficial early-stage plant–bacteria interactions. Plants 10, 1802.

Liu, W., Wang, Q., Hou, J., Tu, C., Luo, Y., Christie, P., 2016. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Scientific Reports 6, 26710.

Liu, X., Luo, Y., Li, Z., Wang, J., Wei, G., 2017. Role of exopolysaccharide in salt stress resistance and cell motility of Mesorhizobium alhagi CCNWXJ12–2T. Applied Microbiology and Biotechnology 101, 2967-2978.

Lutfullin, M.T., Lutfullina, G.F., Pudova, D.S., Akosah, Y.A., Shagimardanova, E.I., Vologin, S.G., Sharipova, M.R., Mardanova, A.M., 2022. Identification, characterization, and genome sequencing of Brevibacterium sediminis MG-1 isolate with growth-promoting properties. Biotechnology 12, 326.

Mäser, P., Gierth, M., Schroeder, J.I., 2002. Molecular mechanisms of potassium and sodium uptake in plants. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium: Food security and sustainability of agro-ecosystems through basic and applied research. Springer 43-54.

Mishra, P., Mishra, J., Arora, N.K., 2021. Plant growth promoting bacteria for combating salinity stress in plants–recent developments and prospects: A review. Microbiological Research 252, 126861.

Moreira, M.H., They, N.H., Rodrigues, L.R., Alvarenga-Lucius, L., Pita-Barbosa, A., 2023. Salty freshwater macrophytes: The effects of salinization in freshwaters upon non-halophyte aquatic plants. Science of The Total Environment 857, 159608.

Muntyan, V.S., Antonova, E.V., Muntyan, A.N., Simarov, B.V., Roumiantseva, M.L., 2020. Phylogenetic analysis of vertically and horizontally acquired genes responsible for salt tolerance of nitrogen-fixing α-proteobacteria. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management 20, 287-294.

Najjari, A., 2023. Genome analysis provides insights into the osmoadaptation mechanisms of Halomonas titanicae. Life in Extreme Environments-Diversity, Adaptability and Valuable Resources of Bioactive Molecules. IntechOpen.

Nascimento, F.X., Urón, P., Glick, B.R., Giachini, A., Rossi, M.J., 2021. Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas thivervalensis sc5 reveals its multifaceted roles in soil and in beneficial interactions with plants. Frontiers in Microbiology 12, 752288.

Noori, F., Etesami, H., Noori, S., Forouzan, E., Jouzani, G.S., Malboobi, M.A., 2021. Whole genome sequence of Pantoea agglomerans ANP8, a salinity and drought stress–resistant bacterium isolated from alfalfa (Medicago sativa L.) root nodules. Biotechnology Reports 29, e00600.

Patel, V.K., Srivastava, R., Sharma, A., Srivastava, A.K., Singh, S., Srivastava, A.K., Kashyap, P.L., Chakdar, H., Pandiyan, K., Kalra, A., 2018. Halotolerant Exiguobacterium profundum PHM11 tolerate salinity by accumulating L-proline and fine-tuning gene expression profiles of related metabolic pathways. Frontiers in Microbiology 9, 423.

Pedersen, B.P., Stokes, D.L., Apell, H.J., 2019. The KdpFABC complex–K+ transport against all odds. Molecular Membrane Biology 35, 21-38.

Pourbabaee, A.A., Bahmani, E., Alikhani, H.A., Emami, S., 2016. Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase.

Pramanik, K., Ghosh, P.K., Ray, S., Sarkar, A., Mitra, S., Maiti, T.K., 2017. An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. Journal of Genetic Engineering and Biotechnology 15, 527-537.

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M.U., Sarwar, M.I., 2019. A review: Impact of salinity on plant growth. Natural Science 17, 34-40.

Saldierna Guzmán, J.P., Reyes-Prieto, M., Hart, S.C., 2021. Characterization of Erwinia gerundensis A4, an almond-derived plant growth-promoting endophyte. Frontiers in Microbiology 12, 687971.

Semida, W.M., El-Mageed, A., Taia, A., Abdalla, R.M., Hemida, K.A., Howladar, S., Leilah, A.A.A., Rady, M.O.A., 2021. Sequential antioxidants foliar application can alleviate negative consequences of salinity stress in Vicia faba L. Plants 10, 914.

Seymen, M., Yavuz, D., Eroğlu, S., Arı, B.Ç., Tanrıverdi, Ö.B., Atakul, Z., Issı, N., 2023. Effects of different levels of water salinity on plant growth, biochemical content, and photosynthetic activity in cabbage seedling under water-deficit conditions. Gesunde Pflanzen 75, 871-884.

Shelake, R.M., Kadam, U.S., Kumar, R., Pramanik, D., Singh, A.K., Kim, J.Y., 2022. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Communities.

Sofo, A., Scopa, A., Nuzzaci, M., Vitti, A., 2015. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences 16, 13561-13578.

Strahl, H., Greie, J.C., 2008. The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+. Extremophiles 12, 741-752.

Suarez, C., Ratering, S., Hain, T., Fritzenwanker, M., Goesmann, A., Blom, J., Chakraborty, T., Bunk, B., Spröer, C., Overmann, J., 2019. Complete genome sequence of the plant growth-promoting bacterium Hartmannibacter diazotrophicus strain E19T. International Journal of Genomics.

Suchan, D.M., Bergsveinson, J., Manzon, L., Pierce, A., Kryachko, Y., Korber, D., Tan, Y., Tambalo, D.D., Khan, N.H., Whiting M., 2020. Transcriptomics reveal core activities of the plant growth-promoting bacterium Delftia acidovorans RAY209 during interaction with canola and soybean roots. Microbial Genomics 6.

Szczerba, M.W., Britto, D.T., Kronzucker, H.J., 2009. K+ transport in plants: physiology and molecular biology. Journal of Plant Physiology 166, 447-466.

Tandang-Silvas, M.R.G., Tecson-Mendoza, E.M., Mikami, B., Utsumi, S., Maruyama, N., 2011. Molecular design of seed storage proteins for enhanced food physicochemical properties. Annual Review of Food Sciencs and Technology 2, 59-73.

Ullah, A., Bano, A., Khan, N., 2021. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems 5, 618092.

Ulrich, K., Kube, M., Becker, R., Schneck, V., Ulrich, A., 2021. Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to plant-growth promotion and stress tolerance. Frontiers in Microbiology 12, 687463.

Wang, L.M., Zhang, L.D., Chen, J.B., Huang, D.F., Zhang, Y.D., 2016. Physiological analysis and transcriptome comparison of two muskmelon (Cucumis melo L.) cultivars in response to salt stress. Genetics and Molecular Research 15, 1-18.

Wu, H., Zhang, X., Giraldo, J.P., Shabala, S., 2018. It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil 431, 1-17.

Xia, X., Liao, Y., Liu, J., Leung, S.K., Lee, P.Y., Zhang, L., Tan, Y., Liu, H., 2023. Genomic and transcriptomic insights into salinity tolerance-based niche differentiation of Synechococcus clades in estuarine and coastal waters. Msystems 8, e01106-01122.

Yu, A.O., Goldman, E.A., Brooks, J.T., Golomb, B.L., Yim, I.S., Gotcheva, V., Angelov, A., Kim, E.B., Marco, M.L., 2021. Strain diversity of plant‐associated Lactiplantibacillus plantarum. Microbial Biotechnology 14, 1990-2008.

Zhang, G., Bai, J., Zhai, Y., Jia, J., Zhao, Q., Wang, W., Hu, X., 2023. Microbial diversity and functions in saline soils: a review from a biogeochemical perspective. Journal of Advanced Research.

Zhichang, Z., Wanrong, Z., Jinping, Y., Jianjun, Z., Xufeng, L.Z.L., Yang Y., 2010. Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress tolerance. African Journal of Biotechnology 9, 972-978.




DOI: https://doi.org/10.33804/pp.007.03.4938

Refbacks

  • There are currently no refbacks.