Integration of Rhizobacterial Isolates and Airone Chemical for Effective Management of Bacterial Wilt in Cucumber (Cucumis sativus)
Abstract
Keywords
References
Atiq, M., H. Zulfiqar, N. A. Rajput, S. T. Sahi, W. Abbas, S. Ahmad, A. Sultan, M. Usman, A. Jabbar and A. Ghaffar. 2022. Bacterial wilt of cucumber: An emerging threat to cucumber production in Pakistan. Plant Cell Biotechnology and Molecular Biology, 31: 54-65. https://doi.org/10.56557/pcbmb/2022/v23i23-247717
Bassi Jr, A. 1982. The overwintering nature of Erwinia tracheiphila (Smith) and resistance to bacterial wilt in cucumber. University of Arkansas.
De Mackiewicz, D., F. Gildow, M. Blua, S. Fleischer and F. Lukezic. 1998. Herbaceous weeds are not ecologically important reservoirs of Erwinia tracheiphila. Plant Disease, 82: 521-29. https://doi.org/10.1094/PDIS.1998.82.5.521
Elsey, K. D. 1989. Cold tolerance of adult spotted and banded cucumber beetles (Coleoptera: Chrysomelidae). Environmental Entomology, 18: 1112-16. https://doi.org/10.1093/ee/18.6.1112
Fleischer, S. J., D. De Mackiewicz, F. Gildow and F. Lukezic. 1999. Serological estimates of the seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera: Chrysomelidae). Environmental Entomology, 28: 470-76. https://doi.org/10.1093/ee/28.3.470
Garcia-Salazar, C., F. Gildow, S. Fleischer, D. Cox-Foster and F. Lukezic. 2000. ELISA versus immunolocalization to determine the association of Erwinia tracheiphila in Acalymma vittatum (Coleoptera: Chrysomelidae). Environmental Entomology, 29: 542-50. https://doi.org/10.1603/0046-225X-29.3.542
Kaur, H., L. M. Nyochembeng, P. Banerjee, E. Cebert and S. Mentreddy. 2019. Optimization of fermentation conditions of Lentinula edodes (Berk.) pegler (shiitake mushroom) mycelia as a potential biopesticide. Journal of Agricultural Science, 11: 1-13. https://doi.org/10.5539/jas.v11n13p1
Khasabulli, B. D., D. M. Musyimi, D. M. Miruka, G. T. Opande and P. Jeruto. 2017. Isolation and characterisation of Ralstonia solanacearum strains of tomato wilt disease from Maseno, Kenya. Journal of Asian Scientific Research, 7: 404-20. https://doi.org/10.18488/journal.2.2017.79.404.420
Klement, Z. and R. Goodman. 1967. The hypersensitive reaction to infection by bacterial plant pathogens. Annual Review of Phytopathology, 5: 17-44. https://doi.org/10.1146/annurev.py.05.090167.000313
Komm, D. and G. Agrios. 1978. Incidence and epidemiology of viruses affecting cucurbit crops in Massachusetts. Plant Disease Reporter, 62: 746-50.
Lewis, P. A., R. L. Lampman and R. L. Metcalf. 1990. Kairomonal attractants for acalymma vittatum (Coleoptera: Chrysomelidae). Environmental Entomology, 19: 8-14. https://doi.org/10.1093/ee/19.1.8
Liu, Q., G. A. Beattie, E. Saalau Rojas and M. L. Gleason. 2018. Bacterial wilt symptoms are impacted by host age and involve net downward movement of Erwinia tracheiphila in muskmelon. European journal of plant pathology, 151: 803-10. https://doi.org/10.1007/s10658-018-1418-7
Malapelle, U., F. Pepe, P. Pisapia, R. Sgariglia, M. Nacchio, M. Barberis, M. Bilh, L. Bubendorf, R. Büttner and D. Cabibi. 2022. TargetPlex FFPE-Direct DNA Library Preparation Kit for SiRe NGS panel: an international performance evaluation study. Journal of Clinical Pathology, 75: 416-21. https://doi.org/10.1136/jclinpath-2021-207450
Mitchell, R. F. and L. M. Hanks. 2009. Insect frass as a pathway for transmission of bacterial wilt of cucurbits. Environmental Entomology, 38: 395-403. https://doi.org/10.1603/022.038.0212
Mohammadi, H. and S. Sharifi. 2016. Association of Botryosphaeriaceae and Phaeoacremonium species with insect-damaged quince shoots. Journal of Plant Pathology, 27: 35-42.
Pecenka, J. R., L. L. Ingwell, R. E. Foster, C. H. Krupke and I. Kaplan. 2021. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. proceedings of the national academy of sciences, 118: e2108429118. https://doi.org/10.1073/pnas.2108429118
Raupach, G. S. and J. W. Kloepper. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88: 1158-64. https://doi.org/10.1094/PHYTO.1998.88.11.1158
Rocha, I., Y. Ma, M. F. Carvalho, C. Magalhães, M. Janoušková, M. Vosátka, H. Freitas and R. S. Oliveira. 2019. Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Archives of Agronomy and Soil Science, 65: 31-43. https://doi.org/10.1080/03650340.2018.1479061
Rojas, E. S., J. C. Batzer, G. A. Beattie, S. J. Fleischer, L. R. Shapiro, M. A. Williams, R. Bessin, B. D. Bruton, T. J. Boucher and L. C. Jesse. 2015. Bacterial wilt of cucurbits: Resurrecting a classic pathosystem. Plant Disease, 99: 564-74. https://doi.org/10.1094/PDIS-10-14-1068-FE
Rojas, E. S. and M. Gleason. 2012. Epiphytic survival of Erwinia tracheiphila on muskmelon (Cucumis melo L.). Plant Disease, 96: 62-66. https://doi.org/10.1094/PDIS-04-11-0277
Sasu, M. A., I. Seidl-Adams, K. Wall, J. Winsor and A. Stephenson. 2010. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environmental Entomology, 39: 140-48. https://doi.org/10.1603/EN09190
Shapiro, L. R., J. N. Paulson, B. J. Arnold, E. D. Scully, O. Zhaxybayeva, N. E. Pierce, J. Rocha, V. Klepac-Ceraj, K. Holton and R. Kolter. 2018. An introduced crop plant is driving diversification of the virulent bacterial pathogen Erwinia tracheiphila. MBio, 9: 10.1128/mbio. 01307-18. https://doi.org/10.1128/mBio.01307-18
Sherf, A. F. and A. A. MacNab. 1986. Vegetable Diseases and Their Control. John Wiley and Sons: New York, USA.
Stockwell, V., K. Johnson and J. Loper. 1998. Establishment of bacterial antagonists of Erwinia amylovora on pear and apple blossoms as influenced by inoculum preparation. Phytopathology, 88: 506-13. https://doi.org/10.1094/PHYTO.1998.88.6.506
Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30: 2725-29. https://doi.org/10.1093/molbev/mst197
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research, 25: 4876-82. https://doi.org/10.1093/nar/25.24.4876
Yao, C., G. Zehnder, E. Bauske and J. Kloepper. 1996. Relationship between cucumber beetle (Coleoptera: Chrysomelidae) density and incidence of bacterial wilt of cucurbits. Journal of Economic Entomology, 89: 510-14. https://doi.org/10.1093/jee/89.2.510
DOI: 10.33687/phytopath.012.03.4986
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Umair Mahmood
This work is licensed under a Creative Commons Attribution 4.0 International License.