Identification and Validation of Mirnas and their Targets that Regulate the Resistance Genes against Fusarium Wilt in Tomato

Heba A. Mahfouze, Sneha Yogindran, Sherin A. Mahfouze, Manchikatla V. Rajam


MicroRNAs (miRNAs) are a specialized group of small RNAs (sRNAs) that regulate gene expression in plants at both transcriptional and post-transcriptional levels. Numerous families of miRNA target genes are involved in regulating plant immunity. In this study, we studied the role of miRNAs in the defensive response against a fungal pathogen, Fusarium oxysporum f. sp. lycopersici, which causes wilt disease in tomatoes. Furthermore, the expression patterns of two novel miRNAs and their targets were validated by qRT-PCR. Moreover, two new miRNAs (miR30 and miR33) were further sequenced by Applied Biosystems, using gene-specific primers. The results showed that four miRNAs, two novel (miR30 and miR33), and two known miRNAs (miR46 and miR49) and their target genes were differentially expressed during the infection with the pathogen. On the other hand, two targets (P4) and (β-1,3-glucanase) showed an inverse correlation in expression with their corresponding (miR46), and (miR33, and miR49), respectively. Our results showed that tomato cv. Pusa Early Dwarf is moderately susceptible to the fungus because its resistance is not well-expressed enough to be attributed to miRNAs. Sequences analysis showed that miR30 and miR33 are highly conserved and are found in different plant species. We predicted the secondary structures of miR30 and miR33 by minimum free energy (MFE). The total free energy of miRNA30 and miR33 was -1.2 and -0.4 kcal/mol respectively, predicted by the Vienna RNA package program V.1.7. The result of this study could improve our comprehension of the role that miRNAs play in tomato resistance to F. oxysporum f. sp. lycopersici. In addition, it will provide novel gene sources to develop resistant breeds.


Fusarium oxysporum; Gene cloning; Gene expression; miRNAs; Non-coding RNAs; Tomato


Bandiera, S., S. Rüberg, M. Girard, N. Cagnard, S. Hanein, D. Chrétien, A. Munnich, S. Lyonnet and A. Henrion-Caude. 2011. Nuclear outsourcing of RNA interference components to human mitochondria. PloS one, 6: e20746.

Bartel, D. P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116: 281-97.

Boller, T. and G. Felix. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual review of plant biology, 60: 379-406.

Cardoso, T. C. d. S., T. C. Alves, C. M. Caneschi, D. d. R. G. Santana, C. N. Fernandes-Brum, G. L. D. Reis, M. M. Daude, T. H. C. Ribeiro, M. M. D. Gómez and A. A. Lima. 2018. New insights into tomato microRNAs. Scientific reports, 8: 1-22.

Chen, M. and Z. Cao. 2015. Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina. BMC genomics, 16: 1-13.

Chen, R., Z. Hu and H. Zhang. 2009. Identification of microRNAs in wild soybean (Glycine soja). Journal of integrative plant biology, 51: 1071-79.

Chopada, G., P. Singh and C. Korat. 2014. Pathogenic variation among Fusarium oxysporum f. sp. lycopersici isolates and varietal screening of tomato against wilt under South Gujarat. The Bioscan, 9: 351-54.

Dou, D. and J.-M. Zhou. 2012. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell host & microbe, 12: 484-95.

Eva, F. and M. Vincent. 2005. A comparison of RNA folding measures. BMC Bioinformatics, 6: 241-48.

Fiedler, S. D., M. Z. Carletti and L. K. Christenson. 2010. Quantitative RT-PCR methods for mature microRNA expression analysis. Methods in Molecular Biology, 630: 49-64.

Gao, Y., S. J. Li, S. W. Zhang, T. Feng, Z. Y. Zhang, S. J. Luo, H. Y. Mao, K. A. Borkovich and S. Q. Ouyang. 2021. SlymiR482e‐3p mediates tomato wilt disease by modulating ethylene response pathway. Plant Biotechnology Journal, 19: 17-25.

Griffiths-Jones, S., H. K. Saini, S. Van Dongen and A. J. Enright. 2007. miRBase: Tools for microRNA genomics. Nucleic acids research, 36: 154-58.

Huang, C.-Y., H. Wang, P. Hu, R. Hamby and H. Jin. 2019. Small RNAs-big players in plant-microbe interactions. Cell Host and Microbe, 26: 173-82.

Huang, J., M. Yang, L. Lu and X. Zhang. 2016. Diverse functions of small RNAs in different plant-pathogen communications. Frontiers in microbiology, 7: 1552-61.

Itaya, A., R. Bundschuh, A. J. Archual, J.-G. Joung, Z. Fei, X. Dai, P. X. Zhao, Y. Tang, R. S. Nelson and B. Ding. 2008. Small RNAs in tomato fruit and leaf development. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1779: 99-107.

Ji, H. M., H. Y. Mao, S. J. Li, T. Feng, Z. Y. Zhang, L. Cheng, S. J. Luo, K. A. Borkovich and S. Q. Ouyang. 2021. Fol‐milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by impairing host immune responses. New Phytologist, 232: 705-18.

Jin, W. and F. Wu. 2015. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. BMC Plant Biology, 15: 1-14.

Jones-Rhoades, M. W. 2012. Conservation and divergence in plant microRNAs. Plant molecular biology, 80: 3-16.

Jones, J. D. and J. L. Dangl. 2006. The plant immune system. Nature, 444: 323-29.

Katiyar-Agarwal, S. and H. Jin. 2010. Role of small RNAs in host-microbe interactions. Annual review of phytopathology, 48: 225-46.

Kavroulakis, N., C. Ehaliotis, S. Ntougias, G. I. Zervakis and K. K. Papadopoulou. 2005. Local and systemic resistance against fungal pathogens of tomato plants elicited by a compost derived from agricultural residues. Physiological and Molecular Plant Pathology, 66: 163-74.

Llave, C., K. D. Kasschau, M. A. Rector and J. C. Carrington. 2002. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 14: 1605-19.

Loong, S. N. K. and S. K. Mishra. 2007. Unique folding of precursor microRNAs: Quantitative evidence and implications for de novo identification. Bioinformatics, 13: 170-87.

Mathews, D. H. and D. H. Turner. 2006. Prediction of RNA secondary structure by free energy minimization. Current opinion in structural biology, 16: 270-78.

Ni, M., W. Shu, X. Bo, S. Wang and S. Li. 2010. Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes. BMC Evolutionary Biology, 10: 1-9.

Ouyang, S., G. Park, H. S. Atamian, C. S. Han, J. E. Stajich, I. Kaloshian and K. A. Borkovich. 2014. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathogens, 10: e1004464.

Padmanabhan, C., X. Zhang and H. Jin. 2009. Host small RNAs are big contributors to plant innate immunity. Current opinion in plant biology, 12: 465-72.

Pan, C., L. Ye, Y. Zheng, Y. Wang, D. Yang, X. Liu, L. Chen, Y. Zhang, Z. Fei and G. Lu. 2017. Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC genomics, 18: 1-16.

Park, W., J. Li, R. Song, J. Messing and X. Chen. 2002. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current biology, 12: 1484-95.

Reinhart, B. J., F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger, A. E. Rougvie, H. R. Horvitz and G. Ruvkun. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403: 901-06.

Rubio-Somoza, I., J. T. Cuperus, D. Weigel and J. C. Carrington. 2009. Regulation and functional specialization of small RNA-target nodes during plant development. Current opinion in plant biology, 12: 622-27.

Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: NY, USA.

Sato, S., S. Tabata, H. Hirakawa, E. Asamizu, K. Shirasawa, S. Isobe, T. Kaneko, Y. Nakamura, D. Shibata and K. Aoki. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485: 635-41.

Singh, N., S. K. Mukherjee and M. V. Rajam. 2020. Silencing of the ornithine decarboxylase gene of Fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Molecular Biology Reporter, 38: 419-29.

Srinivas, C., D. N. Devi, K. N. Murthy, C. D. Mohan, T. Lakshmeesha, B. Singh, N. K. Kalagatur, S. Niranjana, A. Hashem and A. A. Alqarawi. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity-A review. Saudi journal of biological sciences, 26: 1315-24.

Sun, G. 2012. MicroRNAs and their diverse functions in plants. Plant molecular biology, 80: 17-36.

Sunkar, R., V. Chinnusamy, J. Zhu and J.-K. Zhu. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in plant science, 12: 301-09.

Tetorya, M. and M. V. Rajam. 2021. RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato. 3 Biotech, 11: 443.

Trotta, E. 2014. On the normalization of the minimum free energy of RNAs by sequence length. PloS one, 9: e113380.

Wang, Y., A. Itaya, X. Zhong, Y. Wu, J. Zhang, E. van der Knaap, R. Olmstead, Y. Qi and B. Ding. 2011. Function and evolution of a MicroRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. The Plant Cell, 23: 3185-203.

Xu, J., Q. Xian, N. Zhang, K. Wang, X. Zhou, Y. Li, J. Dong and X. Chen. 2021. Identification of miRNA-target gene pairs responsive to fusarium wilt of cucumber via an integrated analysis of miRNA and transcriptome profiles. Biomolecules, 11: 1620.

Yanik, H., M. Turktas, E. Dundar, P. Hernandez, G. Dorado and T. Unver. 2013. Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biology, 13: 1-22.

Yin, Z., C. Li, X. Han and F. Shen. 2008. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene, 414: 60-66.

Yue, D., H. Liu and Y. Huang. 2009. Survey of computational algorithms for microRNA target prediction. Current genomics, 10: 478-92.

Zhang, J., R. Zeng, J. Chen, X. Liu and Q. Liao. 2008. Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill. Gene, 423: 1-7.

Zhang, Y., R. Xia, H. Kuang and B. C. Meyers. 2016. The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Molecular biology and evolution, 33: 2692-705.

Zhu, Y., G. Skogerbø, Q. Ning, Z. Wang, B. Li, S. Yang, H. Sun and Y. Li. 2012. Evolutionary relationships between miRNA genes and their activity. BMC genomics, 13: 1-10.

Zipfel, C. and G. Felix. 2005. Plants and animals: A different taste for microbes? Current opinion in plant biology, 8: 353-60.

Zuo, J., Y. Wang, H. Liu, Y. Ma, Z. Ju, B. Zhai, D. Fu, Y. Zhu, Y. Luo and B. Zhu. 2011. MicroRNAs in tomato plants. Science China Life Sciences, 54: 599-605.

Full Text: PDF

DOI: 10.33687/phytopath.011.03.4329


  • There are currently no refbacks.

Copyright (c) 2022 Sherin A. Mahfouze

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.