Variability in Virulence of Wheat Leaf Rust (Puccinia triticina) in the Sindh Province, Pakistan

Abdul W. Channa, Hadi Bux, Mahboob A. Sial, Ghulam H. Jatoi, Farzana Korejo, Umed Ali, Syed M. A. Shah, Naimatullah Koondhar, Amir A. Mastoi, Isabel M. G. Figari, Muhammad A. Keerio

Abstract


Leaf rust of wheat caused by an obligate biotrophic fungus (Puccinia triticina), is one of the widespread diseases of wheat. The emergence of new virulent races of fungal pathogens threatens wheat cultivars’ resistance, leading to outbreaks that can cause substantial damage to crops and result in economic losses to farmers. Developing wheat cultivars that have resistance to virulent races is an effective means of reducing the frequency and impact of these outbreaks. An experiment was conducted at 5 locations (a trap nursery consisting of 37 lines of wheat leaf rust differentials and 115 commercial wheat cultivars was established against leaf rust pathogen), for evaluating the virulence pattern of leaf rust under natural field environments across wheat-producing regions of Sindh, Pakistan. Results revealed that Lr9, Lr19 and Lr28 genes were found effective under field environments. The  moderate resistance was recorded for Lr18, Lr23 and Lr34 genes at two locations while Lr36 & Lr37 genes had moderate resistance at most of the locations. Results also revealed that Rawal-87, Marvi-2000, Bhittai, Pirsabak-08, Faisalabad-08, Benazir-13 and Shalakot-13 were the commercial wheat varieties having resistance at all locations of Sindh during (year 1 and year 2) years while most of the cultivars showed susceptibility. The scenario clue to a dire necessity to widen the genetic base of Pakistani cultivars by incorporating genes for the resistance against disease. Furthermore, strong monitoring and regular surveys should be conducted for determining current virulence status and resistance genes.


Keywords


Wheat; Leaf rust; Differentials; NILs; Virulence; Commercial cultivars; Field

References


Bolton, M. D., J. A. Kolmer and D. F. Garvin. 2008. Wheat leaf rust caused by Puccinia triticina. Molecular plant pathology, 9: 563-75.

Burdon, J. J., L. G. Barrett, G. Rebetzke and P. H. J. E. A. Thrall. 2014. Guiding deployment of resistance in cereals using evolutionary principles, 7: 609-24.

Chen, X. 2005. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27: 314-37.

Dyck, P., D. J. C. J. o. G. Samborski and Cytology. 1974. Inheritance of virulence in Puccinia recondita on alleles at the Lr2 locus for resistance in wheat, 16: 323-32.

Dyck, P. L. S., DJ 1968. Genetics of resistance to leaf rust in the common wheat varieties Webster, Loros, Brevit, Carina, Malakof and Centenario. Canadian journal of Genetics Cytology, 10: 7-17.

Ellis, J. G., E. S. Lagudah, W. Spielmeyer and P. N. Dodds. 2014. The past, present and future of breeding rust resistant wheat. Frontiers in plant science, 5: 641.

FAOSTAT. 2016. Food and Agriculture Organization. FAOSTAT database.

Fayyaz, M., A. Rattu, I. Ahmad, M. Akhtar, A. Hakro and A. M. Kazi. 2008. Current status of the occurrence and distribution of (Puccinia triticina) wheat leaf rust virulence in Pakistan. Pak. J. Bot, 40: 887-95.

Figlan, S., K. Ntushelo, L. Mwadzingeni, T. Terefe, T. J. Tsilo and H. J. F. i. P. S. Shimelis. 2020. Breeding wheat for durable leaf rust resistance in Southern Africa: variability, distribution, current control strategies, challenges and future prospects, 11: 549.

Flor, H. H. 1971. Current status of the gene-for-gene concept. Annual review of phytopathology, 9: 275-96.

Germán, S., A. Barcellos, M. Chaves, M. Kohli, P. Campos and L. J. A. J. o. A. R. de Viedma. 2007. The situation of common wheat rusts in the Southern Cone of America and perspectives for control, 58: 620-30.

German, S. and J. J. P. d. Kolmer. 1994. Virulence phenotypes of Puccinia recondita f. sp. tritici in Uruguay, 78: 1139-41.

Iqbal, M. J., I. Ahmad, K. A. Khanzada, N. Ahmad, A. Rattu, M. Fayyaz and A. Kazi. 2010. Local stem rust virulence in Pakistan and future breeding strategy. Pakistan Journal of Botany, 42: 1999-2009.

Jin, Y., R. Singh, R. Ward, R. Wanyera, M. Kinyua, P. Njau, T. Fetch, Z. Pretorius and A. J. P. D. Yahyaoui. 2007. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici, 91: 1096-99.

Johnson, T. 1956. Physiologic races of leaf rust of wheat in Canada 1931 to 1955. Canadian Journal of Agricultural Science, 36: 371-79.

Johnston, C. O. 1968. Physiologic races of Puccinia recondita f. sp. tritici in the United States from 1926 through 1960. US Department of Agriculture.

Kolmer, J., A. Hanzalova, H. Goyeau, R. Bayles and A. Morgounov. 2013. Genetic differentiation of the wheat leaf rust fungus Puccinia triticina in Europe. Plant Pathology, 62: 21-31.

Kolmer, J., J. Liu and M. J. P. Sies. 1995. Virulence and molecular polymorphism in Puccinia recondita f. sp. tritici in Canada, 85: 276-85.

Kolmer, J., M. Ordoñez, J. Manisterski and Y. J. P. Anikster. 2011. Genetic differentiation of Puccinia triticina populations in the Middle East and genetic similarity with populations in Central Asia, 101: 870-77.

Kolmer, J. A., M. E. Ordonez and J. V. J. e. Groth. 2009. The rust fungi.

Kthiri, D., A. Loladze, P. MacLachlan, A. N’Diaye, S. Walkowiak, K. Nilsen, S. Dreisigacker, K. Ammar and C. J. Pozniak. 2018. Characterization and mapping of leaf rust resistance in four durum wheat cultivars. PloS one, 13: e0197317.

Lagudah, E. S. 2011. Molecular genetics of race non-specific rust resistance in wheat. Euphytica, 179: 81-91.

Lawlor, D. W. J. J. o. e. b. 2013. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities, 64: 83-108.

Leonova, I. N., E. S. Skolotneva and E. A. J. B. p. b. Salina. 2020. Genome-wide association study of leaf rust resistance in Russian spring wheat varieties, 20: 1-13.

Mains, E. and H. J. P. Jackson. 1926. Physiologic specialisation in the leaf rust of wheat, Puccinia triticina Erikas, 16.

McCallum, B., C. Hiebert, J. Huerta-Espino and S. Cloutier. 2012. Wheat leaf rust. Disease Resistance in Wheat: 33-62.

McIntosh, R., J. Dubcovsky, W. Rogers, C. Morris, X. Xia and L. Designators. 2017. Catalogue of gene symbols for wheat: 2017 supplement. Komugi Wheat Genet Resour database.

McIntosh, R. A., C. R. Wellings and R. F. Park. 1995. Wheat rusts: An atlas of resistance genes. CSIRO publishing.

McVey, D., M. Nazim, K. Leonard and D. Long. 2004a. Patterns of virulence diversity in Puccinia triticina on wheat in Egypt and the United States in 1998-2000. Plant Disease, 88: 271-79.

McVey, D., M. Nazim, K. Leonard and D. J. P. D. Long. 2004b. Patterns of virulence diversity in Puccinia triticina on wheat in Egypt and the United States in 1998-2000, 88: 271-79.

Mendgen, K. and M. J. T. i. p. s. Hahn. 2002. Plant infection and the establishment of fungal biotrophy, 7: 352-56.

Morgounov, A., L. Rosseeva and M. J. A. J. o. A. R. Koyshibayev. 2007. Leaf rust of spring wheat in Northern Kazakhstan and Siberia: incidence, virulence, and breeding for resistance, 58: 847-53.

Nagarajan, S. and L. Joshi. 1985. Epidemiology in the Indian subcontinent. In, Diseases, Distribution, Epidemiology, and Control. Elsevier.

Park, R., T. Fetch, D. Hodson, Y. Jin, K. Nazari, M. Prashar and Z. Pretorius. 2011. International surveillance of wheat rust pathogens: progress and challenges. Euphytica, 179: 109-17.

Peterson, R. F., A. Campbell and A. Hannah. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian journal of research, 26: 496-500.

Pretorius, Z., K. Pakendorf, G. Marais, R. Prins and J. J. A. J. o. A. R. Komen. 2007. Challenges for sustainable cereal rust control in South Africa, 58: 593-601.

Pretorius, Z., B. Visser, T. Terefe, L. Herselman, R. Prins, T. Soko, J. Siwale, B. Mutari, T. Selinga and D. J. A. P. P. Hodson. 2015. Races of Puccinia triticina detected on wheat in Zimbabwe, Zambia and Malawi and regional germplasm responses, 44: 217-24.

Pretorius, Z., R. Wilcoxson, D. Long and J. J. P. D. Schafer. 1984. Detecting wheat leaf rust resistance gene Lr 13 in seedlings [Puccinia recondita f. sp. tritici, influence of temperature].

Rattu, A., I. Ahmad, M. Fayyaz, M. Akhtar, M. Zakria and S. Afzal. 2009. Virulence analysis of Puccinia triticinia cause of leaf rust of wheat. Pakistan Journal of Botany, 41: 1957-64.

Risk, J. M., L. L. Selter, S. G. Krattinger, L. A. Viccars, T. M. Richardson, G. Buesing, G. Herren, E. S. Lagudah and B. J. P. b. j. Keller. 2012. Functional variability of the Lr34 durable resistance gene in transgenic wheat, 10: 477-87.

Roelfs, A. 1989. Epidemiology of the cereal rusts in North America. Canadian Journal of Plant Pathology, 11: 86-90.

Roelfs, A. P. 1992. Rust diseases of wheat: Concepts and methods of disease management. CIMMYT.

Saari, E. E. and J. Prescott. 1985. World distribution in relation to economic losses. In, Diseases, Distribution, Epidemiology, and Control. Elsevier.

Samborski, D. and P. J. C. J. o. B. Dyck. 1976. Inheritance of virulence in Puccinia recondita on six backcross lines of wheat with single genes for resistance to leaf rust, 54: 1666-71.

Sharma-Poudyal, D., Q. Bai, A. Wan, M. Wang, D. See and X. J. P. Chen. 2020. Molecular characterization of international collections of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici reveals high diversity and intercontinental migration, 110: 933-42.

Singh, R. 1991. Pathogenicity variations of Puccinia recondita f. sp. tritici and P. graminis f. sp. tritici in wheat-growing areas of Mexico during 1988 and 1989. Plant Disease, 75: 790-94.

Singh, R. P., S. Herrera-Foessel, J. Huerta-Espino, S. Singh, S. Bhavani, C. Lan and B. R. J. J. o. I. A. Basnet. 2014. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat, 13: 255-61.

Singh, R. P., D. P. Hodson, J. Huerta-Espino, Y. Jin, S. Bhavani, P. Njau, S. Herrera-Foessel, P. K. Singh, S. Singh and V. Govindan. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual review of phytopathology, 49: 465-81.

Singh, R. P., D. P. Hodson, J. Huerta-Espino, Y. Jin, P. Njau, R. Wanyera, S. A. Herrera-Foessel and R. W. J. A. i. a. Ward. 2008. Will stem rust destroy the world's wheat crop?, 98: 271-309.

Singh, R. P., H. M. William, J. Huerta-Espino and G. Rosewarne. 2004. Wheat rust in Asia: meeting the challenges with old and new technologies. Proceedings of the 4th International Crop Science Congress.


Full Text: PDF

DOI: 10.33687/phytopath.012.02.4307

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Ghulam Hussain Jatoi, Abdul Wajid Channa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.