Preliminary Selection and Evaluation of Fungicides and Natural Compounds to Control Grey Mold Disease of Rose Caused by Botrytis cinerea

Ghulam Hussain Jatoi, Manzoor A. Abro, Syed M. Ahmed, Laith K. T. Al-Ani, Umed Ali, Mushtaque A. Jatoi, Isabel M. G. Figari, Jahansher Qambrani, Irfan Ahmed, Abdul S. Soomro, Naeema K. Khaskheli

Abstract


Botrytis cinerea is a plant fungal pathogen causing the grey mold disease of rose ‎‎(Rosa indica L.). Finding new and alternative environment-friendly control strategies than ‎hazardous chemicals on different crop diseases is a crucial and healthy step to cope with ‎the current challenges of climate change. ‎ Therefore, this study aimed to evaluate the efficacy of different botanical extracts and biocontrol agents (biopesticides) along with different fungicides against B. cinerea under in-vitro conditions. Three different concentrations i.e., 100, 200, and 300 ppm of five fungicides namely Acrobate, Melody, Cabrio top, Antracol, and Copper oxychloride, botanical extracts of eight plants Dhatura, Ginger, Aak, Neem and Onion, at three different doses of 5, 10, and 15%, and eleven biocontrol fungal agents were used as antagonistic under in-vitro on rose plants, The survey of ‎disease incidence% of grey mold on the rose crop in the region shows that the Hyderabad region has a maximum (60%) disease incidence as compared to Tandojam region ‎‎(40%). Among fungicides, the Cabrio top significantly reduced linear colony growth (31 mm) of B. cinerea at 300 ppm concentration. Among botanicals, extract of neem plant exhibited significantly lowest colony growth (23.33 mm) followed by the ginger plant (25 mm) and dhatura plant (26 mm). The higher concentration of fungicides and higher doses (15%) of botanicals extracts appeared significantly efficient to control the pathogen B. cinerea. Among biopesticides, Fusarium solani appeared prominent in reducing colony growth (25.16 mm) of the pathogen but the difference was not significant 300 with most of the tested biocontrol agents. The recommendation in this study is the high ability of botanical extracts and biocontrol agents in reducing the growth of grey mold, potentially considering using them instead of synthetic fungicides and more safety for the ecosystem. Keywords: Trichoderma, Fusarium, dhatura, botanical, biological control, synthetic fungicides.

Keywords


Trichoderma; Fusarium; Dhatura; Botanical; Biological control; Synthetic fungicides

References


Ahmed, R., A. S. Gondal, M. T. Khan, S. Shahzaman and S. Hyder. 2018. First report of Botrytis cinerea causing gray mold disease on peach from Pakistan. International Journal of Phytopathology, 7: 131-31.

Al-Ani, L. and B. Salleh. 2010. Control of Fusarium wilt of banana by non pathogenic Fusarium oxysporum. PPSKH colloquium, Pust Pengajian Sains Kajihayat/School of Biological Sciences, USM.

Al-Ani, L., B. Salleh, A. Mohammed, A. Ghazali, A. Al-Shahwany and N. Azuddin. 2013. Biocontrol of Fusarium wilt of banana by non-pathogenic Fusarium spp. International symposium on tropical fungi, ISTF, IPB International Convention Center, Bogor, Indonesia.

Al-Ani, L. K. T. 2017. 23 PGPR: A good step to control several of plant pathogens. Advances in PGPR Research: 398.

Al-Ani, L. K. T. 2019a. Bioactive secondary metabolites of Trichoderma spp. for efficient management of phytopathogens. In, Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer.

Al-Ani, L. K. T. 2019b. Secondary metabolites of non-pathogenic Fusarium: scope in agriculture. In, Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer.

Al-ani, L. K. T. and S. F. A. Albaayit. 2018. Antagonistic of some Trichoderma against Fusarium oxysporum sp. f. cubense tropical race 4 (FocTR4). The Eurasia Proceedings of Science Technology Engineering and Mathematics: 35-38.

Al-Ani, L. K. T., T. Franzino, L. Aguilar-Marcelino, F. el Zahar Haichar, E. L. Furtado, W. Raza, G. H. Jatoi and M. Raza. 2020. The role of microbial signals in plant growth and development: Current status and future prospects. In, New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier.

Al-Ani, L. K. T. and E. L. Furtado. 2020. The effect of incompatible plant pathogens on the host plant. In: Molecular Aspects of Plant Beneficial Microbes in Agriculture. Elsevier.

Al-Ani, L. K. T. and A. M. Mohammed. 2020. Versatility of Trichoderma in plant disease management. In: Molecular aspects of plant beneficial microbes in agriculture. Elsevier.

Azad, R. and S. Shamsi. 2011. Identification and pathogenic potentiality of fungi associated with Houttuynia cordata thunb. Dhaka University Journal of Biological Sciences, 20: 131-38.

Beever, R. E. and P. L. Weeds. 2007. Taxonomy and genetic variation of Botrytis and Botryotinia. In: Botrytis: Biology, pathology and control. Springer.

Bhatti, T. A., Z. A. Nizamani, M. A. Gadhi, F. Soomro, R. Kumar, S. A. Abro, A. H. Soomro, S. Qazi, U. ul din Jarwar and A. G. Kandhro. 2021. Management of downy mildew of onion through selective fungicides in the field condition. Journal of Applied Research in Plant Sciences, 2: 92-107.

Comans-Pérez, R. J., J. E. Sánchez, L. K. T. Al-Ani, M. González-Cortázar, G. S. Castañeda-Ramírez, P. Mendoza-de Gives, A. D. Sánchez-García, J. Millán-Orozco and L. Aguilar-Marcelino. 2021. Biological control of sheep nematode Haemonchus contortus using edible mushrooms. Biological Control, 152: 104420.

Dabur, R., M. Ali, H. Singh, J. Gupta and G. Sharma. 2004. A novel antifungal pyrrole derivative from Datura metel leaves. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 59: 568-70.

Dabur, R., A. Chhillar, V. Yadav, P. K. Kamal, J. Gupta and G. Sharma. 2005. In vitro antifungal activity of 2-(3, 4-dimethyl-2, 5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. Journal of medical microbiology, 54: 549-52.

Daughtrey, M. L., R. L. Wick and J. L. Peterson. 1995. Compendium of flowering potted plant diseases. American Phytopathological Society (APS Press).

Debener, T. and M. Linde. 2009. Exploring complex ornamental genomes: The rose as a model plant. Critical reviews in plant sciences, 28: 267-80.

Elad, Y., B. Williamson, P. Tudzynski and N. Delen. 2007. Botrytis spp. and diseases they cause in agricultural systems–an introduction. In: Botrytis: Biology, pathology and control. Springer.

Ferrada, E. E., B. A. Latorre, J. P. Zoffoli and A. Castillo. 2016. Identification and characterization of Botrytis blossom blight of Japanese plums caused by Botrytis cinerea and B. prunorum sp. nov. in Chile. Phytopathology, 106: 155-65.

Gangemi, S., E. Miozzi, M. Teodoro, G. Briguglio, A. De Luca, C. Alibrando, I. Polito and M. Libra. 2016. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans. Molecular medicine reports, 14: 4475-88.

Hajek, A. E., M. L. McManus and I. D. Junior. 2007. A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biological Control, 41: 1-13.

Hao, Y., X. Cao, C. Ma, Z. Zhang, N. Zhao, A. Ali, T. Hou, Z. Xiang, J. Zhuang and S. Wu. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in plant science, 8: 1332.

Haque, M., M. M. Miah, S. Hossain and M. Alam. 2013. Profitability of rose cultivation in some selected areas of Jessore district. Bangladesh Journal of Agricultural Research, 38: 165-74.

Hennebert, G. 1973. Botrytis and Botrytis-like genera. Persoonia-Molecular Phylogeny and Evolution of Fungi, 7: 183-204.

Jatoi, G. H., S. Muhammad, W. A. Metlo, L. K. T. Al-Ani, M. A. A. Haseenullah, M. A. Gadhi and M. Reki. 2020. Efficacy of different essential oils, fungicides and biocontrol agents against Aspergillus niger the causal agent of fruit rot in Pomegranate. International Journal of Biosciences, 16: 51-65.

Jurick, W. M., O. Macarisin, V. L. Gaskins, E. Park, J. Yu, W. Janisiewicz and K. A. Peter. 2017. Characterization of postharvest fungicide-resistant Botrytis cinerea isolates from commercially stored apple fruit. Phytopathology, 107: 362-68.

LKT, A.-A. 2019. A patent survey on Trichoderma spp. (from 2007-2017). Intellectual property issues in microbiology. Springer, Singapore: 163-92.

Masum, M., S. Islam and M. Fakir. 2009. Effect of seed treatment practices in controlling of seed-borne fungi in sorghum. Scientific Research and Essays, 4: 022-27.

McNicol, R., B. Williamson and K. Young. 1989. Ethylene production by black currant flowers infected by Botrytis cinerea. V International Symposium on Rubus and Ribes 262.

Memon, M. I. N., S. Noonari, I. A. Shahani, A. Pathan, Z. Memon, M. Pathan and A. Manzoor. 2015. Performance of rose production in Sindh Pakistan. Methodology, 5.

Moslem, M. and E. El-Kholie. 2009. Effect of neem (Azardirachta indica A. Juss) seeds and leaves extract on some plant pathogenic fungi. Pakistan journal of biological sciences: PJBS, 12: 1045-48.

Naik, S., T. Narute, T. Narute and P. Khaire. In vitro efficacy of plant extract (botanicals) against Alternaria solani (early blight of tomato). Journal of Pharmacognosy and Phytochemistry, 9: 614-17.

Nizamani, M. H., M. A. Abro, M. A. Gadhi, A. U. Keerio, M. S. A. Talpur and S. Qazi. 2020. Evaluation of different essential oils and bio control agents against Alternaria alternata the causal agent of fruit rot of jujube. Journal of Applied Research in Plant Sciences, 1: 1-8.

Ranaware, A., V. Singh and N. Nimbkar. 2010. In vitro antifungal study of the efficacy of some plant extracts for inhibition of Alternaria carthami fungus. Indian journal of Natural Product and Resources, 1: 384-86.

Sharma, V., R. Salwan and L. Tawfeeq. 2020. Molecular aspects of plant beneficial microbes in agriculture. Academic Press.

Singh, U., H. Singh and R. Singh. 1980. The fungicidal effect of neem (Azadirachta indica) extracts on some soil-borne pathogens of gram (Cicer arietinum). Mycologia, 72: 1077-93.

Talibi, I., H. Boubaker, E. Boudyach and A. Ait Ben Aoumar. 2014. Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology, 117: 1-17.

Thambugala, K. M., D. A. Daranagama, A. J. Phillips, S. D. Kannangara and I. Promputtha. 2020. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology: 718.

Waweru, B., L. Turoop, E. Kahangi, D. Coyne and T. Dubois. 2014. Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biological control, 74: 82-88.

Williamson, B., B. Tudzynski, P. Tudzynski and J. A. Van Kan. 2007. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8: 561-80.


Full Text: PDF

DOI: 10.33687/phytopath.011.01.4181

Refbacks





Copyright (c) 2022 Dr Ghulam Hussain Jatoi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.