Complete Genome Sequence of Tomato Spotted Wilt Virus from Paprika in Korea

Jae-Hyun Kim, Young-Soo Kim, Soo-Won Jang, Yong-Ho Jeon


We isolated tomato spotted wilt virus (TSWV-KP) from a diseased Capsicum annuum var. grossum with malformed leaves and necrotic spotted fruits. TSWV-KP produced necrosis or necrotic ring spots on inoculated leaves along with mosaic, vein necrosis, or death on the upper leaves on Datura stramonium, Nicotiana clevarandii, N. rustica, and N. tabacum cvs. Ultrastructurally, typical tospovirus particles were observed in the cytoplasm. The virion contained three molecules of genomic RNAs of approximately 9.0, 4.9, and 3.0 kb. The nucleocapsid (N) protein of the purified virion migrated as a single band with ~29 kDa molecular weight in SDS-PAGE. Complete nucleotide sequences of the large (L) genome segments of TSWV-KP were determined. Defective forms of L-RNA containing core polymerase regions were observed. L-RNA (8,917 nucleotides) contained a single open reading frame (ORF) in the viral complementary (vc) strand and encoded a 330-kDa protein. The L-protein had high identity in the “core-polymerase domain” with the corresponding regions of other tospoviruses. The complete nucleotide sequence of TSWV-KP medium-sized (M) RNA comprised 4,768 nucleotides and indicated a typical tospovirus with two genes in ambisense arrangement. The vRNA OFR coded for a potential cell-to-cell movement (NSm) 34.8-kDa protein; and the vcRNA ORF, for the viral glycoprotein (G1/G2) 128.0-kDa precursor. Multiple sequence alignment of the M-RNA showed highest homologies to TSWV-BR01. Amino acid sequences of TSWV-KP NSm and G1/G2 exhibited 48.7–85.3% and 34.9–96.2% identity, respectively. TSWV-KP small (S) RNA comprised 2,991 nucleotides with ambisense coding strategy. The sequence contained two ORFs—one in the viral sense, encoding a protein with predicted 52.4-kDa Mr; and another in the viral complementary sense, encoding the viral nucleocapsid protein of 28.8-kDa Mr. Amino acid sequences of TSWV-KP of S-RNA NSs and N exhibited 35.9–87.9% and 19.9–98.4% identity, respectively.


Bunyaviridae; Tospovirus; Tomato spotted wilt virus; paprika; genome structure


Adams, G., S.D. Yeh, D.V.R. Reddy and S.K. Green. 1993. The serological comparison of tospovirus isolates from Taiwan and India with Impatiens necrotic spot virus and different tomato spotted wilt virus isolates. Arch. Virol. 130:237-250.

Adkins, S., R. Quadt, T.J. Choi, P. Ahlquist and T. German. 1995. An RNA-dependent RNA polymerase activity associated virions of tomato spotted wilt virus, a plant and insect-infecting Bunyavirus. Virology. 207:308-311.

Best, R.P. and B.A. Palk. 1964. Electron microscopy of strain E of tomato spotted wilt virus and comments on its probable biosyntheses. Virology. 23:445-460.

Bouloy, M. 1991. Bunyaviridae: Genome organization and replication strategies. Adv. Virus Res. 40:235-275.

Chatzivassiliou, E., I.C. Livieratos, N. Katis, A. Avgelis and D. Lykouressis. 1996. Occurrence of tomato spotted wilt virus in vegetables and ornamentals in Greece. Acta. Hort. 431:44-50.

Cho, J.D., H.S. Choi, J.S. Kim, K.H. Kim and K.S. Kim. 2003. Ultrastructural differences in mixed infections of six Turnip mosaic virus and one Ribgrass mosic virus isolates in Crucifers. Plant Pathol. J. 19:111-116.

Cho, J.J., R. Mau, D. Gonsalves and W.C. Mitchell. 1986. Research weeds of tomato spotted wilt virus. Plant Dis. 70:1014-1017.

Cortez, I., A. Aires, A.M. Pereira, R. Goldbach, D. Peters and R. Kormelink. 2002. Genetic organization of Iris yellow spot virus M RNA: indications for functional homology between the Gc. glycoproteins of tospoviruses and animal-infecting bunyaviruses. Arch. Virol. 147:2313-2325.

De-Avila, A.C., C. Huguenot, R.O. Resende, E.W. Kitajima, R. Goldbach and D. Peters. 1990. Serological differentiation of twenty of tomato spotted wilt virus. J. Gen. Virol. 71:2801-2807.

De-Avila, A.C., P. de-Haan, R. Kormelink, R.O. Resende, R. Goldbach and D. Peters. 1992. Characterization of distinct isolate of tomato spotted wilt virus TSWV. from Impatiens sp. In the Netherlands. J. Phytopathol. 134:133-151.

De-Avila, A.C., P. de-Haan, R. Kormelink, R.O. Resende, R. Goldbach and D. Peters. 1993. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J. Gen. Virol. 74:153-159.

De-Haan, P., R. Kormelink, R.O. Resende, F. van Poelwijk, D. Peters and R. Goldbach. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 72:2207–2216.

De-Haan, P., L. Wagemakers, D. Peters and R. Goldbach. 1989. Molecular cloning and terminal sequence determination of the S RNA and M RNAs of tomato spotted wilt virus. J. Gen. Virol. 70:3469-3473.

De-Haan, P., L. Wagemakers, D. Peters and R. Goldbach. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71:1001-1007.

De-Haan, P., A.C. de-Avila, R. Kormelink, A. Westerbroek, J.J.L. Gielen, D. Peters and R. Goldbach. 1992.. The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Lett. 306:27-32.

Dennis, J.L. and A. Scott. 2005. The tuble-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology. 342:26-37.

Elliott, R.M. 1989. Nucleotide sequence analysis of the large genomic RNA segment of Bunyamwera virus, the prototype of the family Bunyaviridae. Virology. 173:426-436.

Elliott, R.M. 1990. Molecular biology of the Bunyaviridae. J. Gen. Virol. 71:501-522.

Francki, R.I.B. and C.J. Grivell. 1970. An electron microscope study of the distribution of tomato spotted wilt virus in systemically infected Datura stramonium leaves. Virology. 42:969-978.

Francki, R.I.B., R.G. Milne and T. Hatta. 1985. Tomatospotted wilt virus. In Atlas of Plant Viruses. 1:101-110. Boca Ratom: CRC Press.

Francki, R.I.B., C.M. Fauquet, D.D. Knudson and F. Brown. 1991. First report of the Bunyaviridae. Arch. Virol. Supplementum. 2:1-450.

Goldbach, R. and D. Petter. 1994. Possible causes of the emergence of tospovirus diseases. Semin. Virology. 5:113-120.

Greenough, D.R., L.L. Black and W.P. Bond. 1990. Aluminium-surfaced mulch: An approach to the control of tomato spotted wilt virus in solanaceous crops. Plant Dis. 74:805-808.

Ie, T.S. 1964. An electron microscope study of tomato spotted wilt virus in the plant cell. Neth. J. Plant Pathol. 72:114-115.

Ie, T.S. 1970. Tomato spotted wilt virus. CMI/AAB Description of plant viruses. No. 39.

Ie, T.S. 1971. Electron microscopy of developmental stages of tomato spotted wilt virus in plant cells. Virology. 2:468-479.

Ie, T.S. 1973. Tomato spotted wilt virus in the anther of Tropaeolum majus. Neth. J. Plant Pathol. 79: 387-391.

Ie, T.S. 1982. A sap-transmissible, defective form of tomato spotted wilt virus. J. G. Virol. 59:387-391.

Iwaki, M., Y. Honda, K. Hanada, H. Tochihara, T. Yonaha, K. Hokama and T. Yokoyama. 1984. Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Dis. 68:1006-1008.

Kameyi-Iwake, M., K. Hanada and H. Tochihara. 1988. A watermelon strain of tomato spotted wilt virus TSWV-W. and some properties of its nucleocapsid. 5th Int. Congr. Plant Pathol.

Kitajima, E.W. 1965. Electron microscopy of vira-cabeca virus Brazilian tomato spotted wilt virus. within the host cell. Virology. 26:89-99.

Kitajima, E.W., A.C. de-Avila, R.O. Resende, R. Goldbach and D. Peters. 1992a. Comparative cytological and immunological labeling studies on different isolates of tomato spotted wilt virus. J. Submicrosc Cytol. Path. 24:1-14.

Kitajima, E.W., R.O. Resende, A.C. de-Avila, R. Goldbach and D. Peters. 1992b. Immuno-electron microscopical detection of tomato spotted wilt virus and its nucleocapsids in crude plant extract. J. Virol. Methods. 38:313-322.

Kormelink, R., P. de-Haan, C. Meurs, D. Peters and R. Goldbach. 1992. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus: A plant-infecting bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73:2795-2804.

Kormelink, R., E.W. Kitajima, P. de-Haan, D. Zuidema, D. Peters and R. Goldbach. 1991. The nonstructural protein NSs. encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant sells. Virology. 181:459-468.

Kormelink, R., M. Storms, J.V. Lent, D. Peters and R. Goldbach. 1994. Expression and subcellular location of NSm protein of tomato spotted wilt virus TSWV., a putative viral movement protein. Virology. 200:56-65.

Krug, R.M., F.V. Alonso-Caplen, I. Julkunen and M.G. Katze. 1989. Expression and replication of the influenza virus genome. In The Influenza Viruses, pp. 89-152. Edited by Krug, R.M. New York: Plenum Press.

Laemmli, U.K. and M. Farre. 1973. Maturation of the head of bacteriophage T4. I. DNA packaging event. J. Mol. Biol. 80:575-599.

Lapido, J.L., D.E. Lesemann and R. Koenig. 1988. Host ranges, serology and cytopathology of eggplant and tomato strains of eggplant severe mottle virus, a new potyvirus from Nigeria. J. of Phytopathol. 122:359–71.

Law, M.D. and J.W. Moyer. 1990. A tomato spotted wilt-like virus with serologically distinct N protein. J. Gen. Virol. 71:933-938.

Lawson, R.H., M.M. Dienelt and H.T. Hsu. 1993. Effects of passaging a defective isolate of impatiens necrotic spot virus at different temperature. Phytopathol. 83:662-670.

Maiss, E., L. Ivanova, E. Breyel and G. Adam. 1991. Cloning and sequencing of the S RNA from a Bulgarian isolate of tomato spotted wilt virus. J. Gen. Virol. 72:461-464.

Melcher, U. 2000. The ‘30K’ superfamily of viral movement proteins. J. Gen. Virol. 81:257-266.

Milne, R.G. and G.A. de-Zoeten. 1967. A comparison of some methods of preparation of thin sections of virus infected leaves for electron microscopy. J. Ultrastructural Res. 19:398-407.

Milne, R.G. 1970. An electron microscope study of tomato spotted wilt virus in sections of infected cell and in negative stain preparation. J. Gen. Virol. 6:276-276.

Mohamed, N.A. 1981. Isolation and characterization of subviral structures from tomato spotted wilt virus. J. Gen. Virol. 53:197-206.

Mohamed, N.A., J.W. Randles and R.I.B. Francki. 1973. Protein composition of tomato spotted wilt virus. Virology. 56:12-21.

Morris, T.J. and J.A. Dodds. 1979. Isolation and analysis of double stranded RNA from virus-infected plant and fungal tissue. Phytopathol. 69:854-858.

Muller, R., O. Poch, M. Delarue, D.H.L. Bishop and M. Bouloy. 1994. Rift valley fever virus L segment; correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerase. J. Gen. Virol. 75:1345-1352.

Mushegian, A.R. and E.V. Koonin. 1993. Cell-cell movement of plant viruses: insights from amino acid sequence comparisons of movement proteins and from analogies with cellural transport systems. Arch. Virol. 133:239-257.

Pang, S.Z., J.L. Silghtom and D. Gonsalves. 1993. The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathol. 83:728-733.

Parvin, J.D., P. Palese, A. Honda, A. Ishihama and M. Krystal. 1989. Promotor analysis of influenza virus RNA polymerase. J. Virol. 63:5142-5152.

Petters, D., A.C. de-Avila, E.W. Kitajima, R.O. Resende, P. de-Haan and R. Goldbach. 1991. An overview of tomato spotted wilt virus. In virus-thrips-plant interaction of TSWV, proceeding of USDA workshop, Beltsville, U.S.A., pp. 1-14. Edited by HT Hsu and RH Lawson. Springfield: National technology information service.

Poch, O., I. Sauvaget, M. Delarue and N. Tordo. 1989. Identification of four conserved motif among the RNA-dependent polymerases encoding element. EMBO. 8:3867-3874.

Raju, R. and D. Kolakofsky. 1989. The end of la crosse virus genome and antigenome RNAs within nucleocapsids are basepaired. J. Virol. 63: 122-128.

Resende, R.O., P. de-Haan, A.C. de-Avila, E.W. Kitajima, R. Kormelink, R. Goldbach and D. Peters. 1991a. Generation of enveloped and defective interfering RNA mutants of tomato spotted wilt virus by mechanical passage. J. Gen. Virol. 72:2375-2383.

Resende, R.O., E.W. Kitajima, A.C. de-Avila, R. Goldbach and D. Peters. 1991b. Defective isolates of tomato spotted wilt virus. In: Virus-thrips plant interactions of tomato spotted wilt virus. Hsu, H.T. and Lawson, R.H., eds., US Dep. Agr., Agr. Res. Serv., ARS. 87: 71-76.

Ryu, K.H., C.W. Choi, J.K. Choi and W.M. Park. 1995. Cloning of the 3’-terminal region encoding movement and coat proteins of a Korean isolate of odontoglossum ringspot virus. Arch. Virol. 140:481-490.

Satyanarayana, T., K. Lakshminarayana-Reddy, A.S. Ratna, C.M. Deom, S. Gowda and D.V.R. Reddy. 1996. Peanut yellow spot virus: A distinct tospovirus species based on serology and nucleic acid hybridization. Ann. Appl. Biol. 129:237-245.

Schmaljohn, C.S. 1990. Nucleotide sequence of the L genome segment of Hantaan virus. Nucleic Acids Res. 18:6728.

Silva, M.S., C.R.F. Martins, I.C. Bezerra, T. Nagata, A.C. de-Avila and R.O. Resende. 2001. Sequence diversity of NSm movement protein of tospoviruses. Arch. Virol. 146:1267-1281.

Sippel, A.E. 1973. Purification and characterization of adenosine triphosphate ribonucleicacid adenyltransferase from Escherichia coli. European J. Biochemistry. 37:31-40.

Storm, M.M.H., R. Kormelink, D. Peters, J. van-Lent and R. Goldbach. 1995. The non-structural NSm protein of tomato spotted wilt virus induces tubural structures in plant and insect cell. Virology. 214:485-493.

Tas, P.W.L., M.L. Boerjan and D. Peters. 1977. The structural proteins of tomato spotted wilt virus. J. Gen. Virol. 36:267-279.

Tsuda, S., K. Hanada, S. Hidaka, Y. Minobe, M. Kameya-Iwaki and K. Tomaru. 1992. The presence of three pairs of possibly complementary RNA species in isolated nucleocapsid material of Tomato spotted wilt virus. Ann. Phytopath. Soc. Jpn. 58:393-404.

Tsuda, S., M. Kameya-Iwaki, K. Hanada, K. Tomaru and Y. Minobe. 1996. Grouping of five Tospovirus isolates from Japan. Acta. Hort. 431:176-185.

Van-Den-Hurk, J., P.W.L. Tas and D. Peters. 1977. The ribonucleic acid of tomato spotted wilt virus. J. Gen. Virol. 36:81-91.

Van-Poelwijk, F., K. Boye, R. Oosterling, D. Peters and R. Goldbach. 1993. Detection of the L protein of tomato spotted wilt virus. Virology. 197:468-470.

Verkleij, F.N. and D. Peters. 1983. Characterization of a defective form of tomato spotted wilt virus. J. Gen. Virol. 64:677-686.

Yeh, S.D. and T.F. Chang. 1995. Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus tospovirus. Phytopathol. 85:58-64.

Yen, S.D., Y.C. Lin, Y.H. Cheng, C.L. Jin, M.J. Chen and C.C. Chen. 1992. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis. 76:835-840.

Full Text: PDF

DOI: 10.33687/phytopath.002.03.0378


  • There are currently no refbacks.

Copyright (c) 2013 Jae-Hyun Kim, Young-Soo Kim, Soo-Won Jang, Yong-Ho Jeon

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.