Brown Spot and Stalk Rot diseases of maize (Zea mays) and susceptibility of two varieties to Physoderma maydis in Far North Cameroon

Jules P. N. Dooh, Djile Bouba, Djongnang Gabriel, Tchoupou T. D. Brice, Yamagui Rita, Ntatsinda C. Durel, Heu Alain, Ambang Zachee

Abstract


Corn (Zea mays L.) is one of the most widely grown cereals in the world. However, in Cameroon, particularly in the Far North Region, yields remain low because of diseases increasing due to farming practices and climate change. This work aimed to characterize Brown Spot and Stalk Rot of corn and evaluate the susceptibility of two maize varieties to Physoderma maydis in field conditions. Two maize varieties, CMS9015, and CMS8704 were evaluated in a randomized block design. Disease symptoms were observed and described using identification keys. Microscopic characteristics of pathogens were performed using a microscope. Incidence, severity, and areas under disease curve progress (AUIPC and AUSiPC) were calculated.  Brown spot occurred 3 or 4 weeks after sowing (WAS) at the growing stage in CMS8704 variety first, and stalk rot 7 WAS. Brown spot appeared in leaves and is characterized by oval yellowish spots in the leaf blade and brownish spots in the midrid. Stalk rot infects stem nodes and is characterized by brownish spots, leading to the broken stem. The incidence of brown spot increased with time and environmental conditions (rainfall). The highest incidence of Physoderma Brown Spot was recorded with CMS8704 variety 53.06 % against 51.72 % with CMS9015. Severity was respectively 54.40 % and 47.12 % with CMS8704 and CMS9015. The incidence and severity of stalk rot were almost identical in both varieties. AUIPC of PBS and PSR was higher in CMS9015 than in CMS 8704, 63 DAS. PBS and PSR infect maize production, and both varieties are susceptible to P. maydis


Keywords


Zea mays; Physoderma maydis; Brown spot; Stalk rot; varieties; incidence; severity

References


Abendroth, L. J., R. W. Elmore, M. J. Boyer and S. K. Marlay. 2011. Corn growth and development PMR 1009Iowa State University. Ames, USA.

Bamle, S. 2018. Impact des engrais sur le développement des maladies du maïs, Université de Maroua.

Biaou, O. D. B., A. Saidou, F. X. Bachabi, G. E. Padonou and I. Balogoun. 2017. Effet de l'apport de différents types d'engrais organiques sur la fertilité du sol et la production de la carotte (Daucus carota L.) sur sol ferralitique au sud Bénin. International Journal of Biological Chemical Sciences, 11: 2315-26. https://doi.org/10.4314/ijbcs.v11i5.29

Burns, E. E. and M. C. Shurtleff. 1973. Observations of Physoderma maydis in Illinois: Effects of tillage practices in field corn. Plant Disease Reporter, 57: 630-33.

CIMMYT. 1978. Maladie du maïs deuxième. EL Batan, Mexico, pp. 97.

Cooke, B. M. 2006. Disease assessment and yield loss The Epidemiology of Plant Diseases. Kluwer Academic Publishers. pp. 43-80. https://doi.org/10.1007/1-4020-4581-6_2

Eddins, A. H. 1933. Infection of corn plants by Physoderma zeae-maydis. Journal of Agricultural Research, 46: 241-52.

FAO. 2019. FAO Production Year Book. Food and Agriculture Organization of the United Nations. Rome, Italy.

Harvey, P. H., D. L. Thompson and T. T. Herbert. 1955. Reaction of inbred lines of corn to brown spot. Plant Disease Reporter, 39: 973-76.

Hatfield, J. L., K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson and D. Wolfe. 2011. Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103: 351-70. https://doi.org/10.2134/agronj2010.0303

IRAM/MINADER. 2017. Evaluation des risques agricoles au Cameroun. Plateforme for Agricultural Risk Management. pp. 138.

Jakson, T. P. 2018. Physoderma brown spot and stalk rot, University of Nebraska-Lincoln. http://cropwatch.unl.edu/plantdisease/com/Physoderma.

Kambire, H., G. Abdel-Rahman, B. Bacyé and Y. Dembele. 2010. Modeling of maize yields in the south-Sudanian zone of Burkina Faso-West Africa. American-Eurasian Journal of Agricultural Environmental Science, 7: 195-201.

Kone, N., E. Asare-Bediako, S. Silue, D. Kone, O. Koita, W. Menzel and S. Winter. 2017. Influence of planting date on incidence and severity of viral disease on cucurbits under field condition. Annals of Agricultural Sciences, 62: 99-104. https://doi.org/10.1016/j.aoas.2017.05.005

Le poivre, P. 2003. Phytopathologie. De loece, les presses agronomiques de Gembloux.

Li, J.-h., X.-y. Jiang, Y. Wang, D.-q. Ge, L.-x. Nie and S.-h. Wu. 2010. Effect of tebuconazole on the spatial distribution of corn brown spot and the yield to summer maize. Agrochemicals, 7.

Li, N., J. Zhao, R. Zhang, L. Deng, J. Li, Y. Gao and C. Liu. 2018. Effect of tebuconazole enantiomers and environmental factors on fumonisin accumulation and FUM gene expression in Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 66: 13107-15. https://doi.org/10.1021/acs.jafc.8b04900 PMid:30458614

Maybelline, E. T., E.-T. Hoopen and A. Maïga. 2012. Production et transformation du maïs. CTA: Wageningen, Pays-Bas, ISF Cameroun.

Mueller, D. and K. Wise. 2014. Corn disease loss estimates from the United States and Ontario, Canada-2013. Crop Protection Netework, Purdue University. West Lafayette, IN. http://dx.doi.org/10.31274/cpn-20190620-036

Muengula-Manyi, M., L. Mukwa, K. K. Nkongolo, P. Tshilenge-Djim, S. Winter, C. Bragard and A. Kalonji-Mbuyi. 2013. Assessing reactions of genetically improved and local cassava varieties to Cassava Mosaic Disease (CMD) infection in a Savannah region of the DR-Congo. American Journal of Plant Sciences, 04: 824-37. https://doi.org/10.4236/ajps.2013.44101

Njomaha, C. 2003. Durabilité des systèmes de culture dans l'Extrême-Nord Cameroun. Savanes africaines: des espaces en mutation, des acteurs face à de nouveaux défis. Actes du colloque, Garoua, Cameroun.

Régine, A. and D. Coderre. 2000. Abondance et diversité des foreurs de tiges et grains dans une biculture maïs-arachide au centre du Cameroun. African Crop Science Journal, 8: 365-668. https://doi.org/10.4314/acsj.v8i4.27677

Reid, L. M., X. Zhu and B. L. Ma. 2001. Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant and Soil, 237: 1-14.

Robertson, A. E. 2008. Unusual foliar diseases showing up in Iowa corn. Iowa State University. Ames, Iowa, USA. http://crops.extension.iastate.edu/cropnews/2008/07/unusual-foliar-diseases-showing-iowacorn.

Robertson, A. E., L. Jesse, G. Munkvold, E. S. Rojas and D. S. Mueller. 2015. Physoderma brown spot and stalk rot of corn caused by Physoderma maydis in Iowa. Plant Health Progress, 16: 90-92. https://doi.org/10.1094/PHP-BR-15-0003

Rouanet, G. 1984. Le maïs: Technicien d'agriculture tropicale. Édition Maisonneuve et Larose: Paris, France.

Tisdale, W. H. 1919. Physoderma disease of corn. Journal of Agricultural Research, 16: 137-54.

Tompkins, D. K., D. B. Fowler and A. T. Wright. 1992. Foliar disease development in no-till winter wheat: Influence of agronomic practices on powdery mildew development. Canadian Journal of Plant Science, 72: 965-72. https://doi.org/10.4141/cjps92-121

Veresoglou, S. D., E. K. Barto, G. Menexes and M. C. Rillig. 2012. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology, 62: 961-69. https://doi.org/10.1111/ppa.12014

Wise, K., B. Kennedy, K. Mehl and C. A. Bradley. 2018. Physoderma brown spot, University of Kentucky.


Full Text: PDF

DOI: 10.33687/phytopath.010.01.3505

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jules Patrice NGOH DOOH

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.