Combating Ug99 - Current Scenario

Amir Afzal, Sayad R. Ali, Muhammad Ijaz, Muhammad Saeed

Abstract


The yield potential of wheat crop is not achieved abundantly because of disease pressure. One of the most destructive of such diseases is stem rust (SR). SR caused by Puccinia graminis f. sp. tritici (Pgt), had been controlled successfully during three decades throughout the world with deployment of semi-dwarf resistant cultivars in the last half of previous century. During 1999 appearance and dispersion of stem rust race Ug-99 in Uganda (a virulent race against Sr31) created an alarming situation worldwide. Widespread germplasm was protected by gene Sr31 found susceptible to this terrible strain as the gene was protecting 80% wheat lines cultivated throughout planet. The emergence of the Ug99 race of stem rust in Africa and the Middle East together with the appearance of new strains in Europe catalyzed a main effort to recognize sources of stem rust resistance genes against new virulent strains and incorporate these genes into wheat lines. Scientific community addressed the dilemma in time and efforts did not go waste. Worldwide concern regarding the danger to global wheat production caused by Ug99 led to breeding wheat for durable resistance against disease and achieved considerably. This success is attributed to team work of experts and serves as an example for research workers in future. However, the continued emergence of stem rust variants that overcome new resistance genes, demands an amplified emphasis on pathogen evolution and virulence mechanisms. A major role for BGRI is to keep ‘the eye on the ball’ with regard to all these aspects. This article enables us to design strategy to tackle a situation which appears without alarm but in this case intellectuals coordinated each other and solution became possible. The same principle does not apply in plant pathology but in Human pathology and Veterinary pathology.

Keywords


Wheat; Black rust; Stem rust; Puccinia graminis tritici; Ug99, Sr31

References


Abdelrahman, M., A. M. Al-Sadi, A. Pour-Aboughadareh, D. J. Burritt and L.-S. P. Tran. 2018. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiology and Biochemistry, 131: 31-36. https://doi.org/10.1016/j.plaphy.2018.03.012 PMid:29628199

Admassu, B., V. Lind, W. Friedt and F. Ordon. 2009. Virulence analysis of Puccinia graminis f. sp. tritici populations in Ethiopia with special consideration of Ug99. Plant Pathology, 58: 362-69. https://doi.org/10.1111/j.1365-3059.2008.01976.x

Afzal, A., M. Ijaz and S. R. A. Shah. 2020. Determination of suitable growth stage for application of fungicide against stripe rust in wheat. Pakistan Journal of Agricultural Research, 33: 714-19. https://doi.org/10.17582/journal.pjar/2020/33.4.714.719

Afzal, A., A. Riaz, J. I. Mirza and K. N. Shah. 2015. Status of wheat breeding at global level for combating Ug99-A Review. Pakistan Journal of Phytopathology, 27: 211-18.

Anderson, J. A. 2003. Plant genomics and its impact on wheat breeding. Blackwell, Boca Raton.

Anugrahwati, D. R., K. W. Shepherd, D. C. Verlin, P. Zhang, Ghader Mirzaghaderi, E. Walker, M. G. Francki and I. S. Dundas. 2008. Isolation of wheat-rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome, 51: 341-49. https://doi.org/10.1139/G08-019 PMid:18438437

Bajgain, P., M. N. Rouse, P. Bulli, S. Bhavani, T. Gordon, R. Wanyera, P. N. Njau, W. Legesse, J. A. Anderson and M. O. Pumphrey. 2015. Association mapping of North American spring wheat breeding germplasm reveals loci conferring resistance to Ug99 and other African stem rust races. BMC Plant Biology, 15: 1-19. https://doi.org/10.1186/s12870-015-0628-9 PMid:26467989 PMCid:PMC4606553

Bariana, H. S., H. Miah, G. N. Brown, N. Willey and A. Lehmensiek. 2007. Molecular mapping of durable rust resistance in wheat and its implication in breeding Developments in Plant Breeding. Springer Netherlands. pp. 723-28. https://doi.org/10.1007/1-4020-5497-1_88

Bhardwaj, S. C. 2012. Wheat rust pathotypes in Indian subcontinent then and now. Narosa Publishing House Pvt. Ltd.: New Delhi, India.

Bhardwaj, S. C., G. P. Singh, O. P. Gangwar, P. Prasad and S. Kumar. 2019. Status of wheat rust research and progress in rust management-Indian context. Agronomy, 9: 1-14. https://doi.org/10.3390/agronomy9120892

Bhattacharya, S. 2017. Deadly new wheat disease threatens Europe's crops. Nature, 542: 145-46. https://doi.org/10.1038/nature.2017.21424 PMid:28179687

Bhavani, S., D. P. Hodson, J. Huerta-Espino, M. S. Randhawa and R. P. Singh. 2019. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Frontiers of Agricultural Science and Engineering, 6: 210-24. https://doi.org/10.15302/J-FASE-2019268

Biffen, R. H. 1905. Mendel's laws of inheritance and wheat breeding. The Journal of Agricultural Science, 1: 4-48. https://doi.org/10.1017/S0021859600000137

Bolton, M. D., J. A. Kolmer and D. F. Garvin. 2008. Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9: 563-75. https://doi.org/10.1111/j.1364-3703.2008.00487.x PMid:19018988 PMCid:PMC6640346

Boyd, L. A. 2005. Can robigus defeat an old enemy? - Yellow rust of wheat. The Journal of Agricultural Science, 143: 233-43. https://doi.org/10.1017/S0021859605005095

Chen, X. 2013. High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences, 04: 608-27. https://doi.org/10.4236/ajps.2013.43080

Chen, X. M. 2005. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 27: 314-37. https://doi.org/10.1080/07060660509507230

De Wolf, E. D. and S. A. Isard. 2007. Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45: 203-20. https://doi.org/10.1146/annurev.phyto.44.070505.143329 PMid:17408356

Dundas, I. S., D. R. Anugrahwati, D. C. Verlin, R. F. Park, H. S. Bariana, R. Mago and A. K. M. R. Islam. 2007. New sources of rust resistance from alien species: Meliorating linked defects and discovery. Australian Journal of Agricultural Research, 58: 545-49. https://doi.org/10.1071/AR07056

Ejaz, M., M. Iqbal, A. Shahzad, I. Ahmed and G. M. Ali. 2012. Genetic variation for markers linked to stem rust resistance genes in Pakistani wheat varieties. Crop Science, 52: 2638-48.

FAO. 2017. The future of food and agriculture-Trends and challenges. Food and Agriculture Organization. Rome, Italy.

Figueroa, M., K. E. Hammond-Kosack and P. S. Solomon. 2017. A review of wheat diseases-A field perspective. Molecular Plant Pathology, 19: 1523-36. https://doi.org/10.1111/mpp.12618 PMid:29045052 PMCid:PMC6638159

Fu, Y.-B. and D. J. Somers. 2009. Genome-wide reduction of genetic diversity in wheat breeding. Crop Science, 49: 161-68. https://doi.org/10.2135/cropsci2008.03.0125

Ghazvini, H., C. W. Hiebert, T. Zegeye, S. Liu, M. Dilawari, T. Tsilo, J. A. Anderson, M. N. Rouse, Y. Jin and T. Fetch. 2012. Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of Sr42. Theoretical and Applied Genetics, 125: 817-24. https://doi.org/10.1007/s00122-012-1874-y PMid:22580967

Haile, J. K. and M. S. Rouml. 2013. Status of genetic research for resistance to Ug99 race of Puccinia graminis f. sp. tritici: A review of current research and implications. African Journal of Agricultural Research, 8: 6670-80.

Hale, I. L., I. Mamuya and D. Singh. 2013. Sr31-virulent races (TTKSK, TTKST, and TTTSK) of the wheat stem rust pathogen Puccinia graminis f. sp. tritici are present in Tanzania. Plant Disease, 97: 557-57. https://doi.org/10.1094/PDIS-06-12-0604-PDN PMid:30722237

Hawkes, J. G. 1981. Germplasm Collection, Preservation, and Use Plant Breeding Symposium. Iowa State University Press. Iowa, IA, USA.

Hayden, M. J., H. Kuchel and K. J. Chalmers. 2004. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109: 1641-47. https://doi.org/10.1007/s00122-004-1787-5 PMid:15340687

Hiebert, C. W., T. G. Fetch and T. Zegeye. 2010a. Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar webster. Theoretical and Applied Genetics, 121: 65-69. https://doi.org/10.1007/s00122-010-1291-z PMid:20195568

Hiebert, C. W., T. G. Fetch, T. Zegeye, J. B. Thomas, D. J. Somers, D. G. Humphreys, B. D. McCallum, S. Cloutier, D. Singh and D. R. Knott. 2010b. Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars 'Peace' and 'AC Cadillac'. Theoretical and Applied Genetics, 122: 143-49. https://doi.org/10.1007/s00122-010-1430-6 PMid:20725713

Hoisington, D., M. Khairallah, T. Reeves, J. M. Ribaut, B. Skovmand, S. Taba and M. Warburton. 1999. Plant genetic resources: What can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.96.11.5937 PMid:10339521 PMCid:PMC34209

Hovmøller, M. S., J. Rodriguez-Algaba, T. Thach, A. F. Justesen and J. G. Hansen. 2019. Report for Puccinia striiformis race analyses/molecular genotyping, GRRC, Flakkebjerg, DK- 4200 Slagelse, Denmark. GRRC, Aarhus University. Denmark.

Huang, X., A. Börner, M. Röder and M. Ganal. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics, 105: 699-707. https://doi.org/10.1007/s00122-002-0959-4 PMid:12582483

Hundie, B., B. Girma, Z. Tadesse, E. Edae, P. Olivera, E. H. Abera, W. D. Bulbula, B. Abeyo, A. Badebo, G. Cisar, G. Brown-Guedira, S. Gale, Y. Jin and M. N. Rouse. 2019. Characterization of Ethiopian wheat germplasm for resistance to four Puccinia graminis f. sp. tritici races facilitated by single-race nurseries. Plant Disease, 103: 2359-66. https://doi.org/10.1094/PDIS-07-18-1243-RE PMid:31355733 PMCid:PMC7779970

Iqbal, M. J., I. Ahmad, K. A. Khanzada, N. Ahmad, A. Rattu, M. Fayyaz and A. Kazi. 2010. Local stem rust virulence in Pakistan and future breeding strategy. Pakistan Journal of Botany, 42: 1999-2009.

Jin, Y., R. P. Singh, R. W. Ward, R. Wanyera, M. Kinyua, P. Njau, T. Fetch, Z. A. Pretorius and A. Yahyaoui. 2007. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Disease, 91: 1096-99. https://doi.org/10.1094/PDIS-91-9-1096 PMid:30780647

Jin, Y., L. J. Szabo, M. N. Rouse, T. Fetch, Z. A. Pretorius, R. Wanyera and P. Njau. 2009. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Disease, 93: 367-70. https://doi.org/10.1094/PDIS-93-4-0367 PMid:30764215

Kang, Z., J. Zhao, D. Han, H. Zhang, X. Wang, C. Wang, Q. Han, J. Guo and L. Huang. 2010. Status of wheat rust research and control in China. BGRI 2010 technical workshop oral presentations, St. Petersburg, Russia.

Khan, M. A. and R. G. Saini. 2009. Non-hypersensitive leaf rust resistance of bread wheat cultivar PBW65 conditioned by genes different from Lr34. Czech Journal of Genetics and Plant Breeding, 45: 26-30. https://doi.org/10.17221/51/2008-CJGPB

Klindworth, D. L., Z. Niu, S. Chao, T. L. Friesen, Y. Jin, J. D. Faris, X. Cai and S. S. Xu. 2012. Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. Genes, Genomes, Genetics, 2: 665-73. https://doi.org/10.1534/g3.112.002386

Kolmer, J. A., D. L. Long and M. E. Hughes. 2005. Physiologic specialization of Puccinia triticina on wheat in the United States in 2003. Plant Disease, 89: 1201-06. https://doi.org/10.1094/PD-89-1201 PMid:30786444

Lewis, C. M., A. Persoons, D. P. Bebber, R. N. Kigathi, J. Maintz, K. Findlay, V. Bueno-Sancho, P. Corredor-Moreno, S. A. Harrington and N. Kangara. 2018. Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology, 1: 1-9. https://doi.org/10.1038/s42003-018-0013-y PMid:30271900 PMCid:PMC6053080

Liu, W., M. Rouse, B. Friebe, Y. Jin, B. Gill and M. O. Pumphrey. 2011. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Research, 19: 669-82. https://doi.org/10.1007/s10577-011-9226-3 PMid:21728140

Mago, R., H. S. Bariana, I. S. Dundas, W. Spielmeyer, G. J. Lawrence, A. J. Pryor and J. G. Ellis. 2005. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics, 111: 496-504. https://doi.org/10.1007/s00122-005-2039-z PMid:15918008

Mago, R., H. Simkova, G. Brown-Guedira, S. Dreisigacker, J. Breen, Y. Jin, R. Singh, R. Appels, E. S. Lagudah, J. Ellis, J. Dolezel and W. Spielmeyer. 2010. Erratum to: An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics, 122: 745-45. https://doi.org/10.1007/s00122-010-1513-4

Mago, R., W. Spielmeyer, G. J. Lawrence, J. G. Ellis and A. J. Pryor. 2004. Resistance genes for rye stem rust (SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome. Genome, 47: 112-21. https://doi.org/10.1139/g03-096 PMid:15060608

McIntosh, R. A., C. R. Wellings and R. F. Park. 1995. Wheat Rusts: An Atlas of Resistance GenesCSIRO Publishing. Australia. pp. 213. https://doi.org/10.1071/9780643101463

Mujeeb-Kazi, A., A. G. Kazi, I. Dundas, A. Rasheed, F. Ogbonnaya, M. Kishii, D. Bonnett, R. R. C. Wang, S. Xu, P. Chen, T. Mahmood, H. Bux and S. Farrakh. 2013. Genetic diversity for wheat improvement as a conduit to food security. In, Advances in Agronomy. Elsevier. https://doi.org/10.1016/B978-0-12-417187-9.00004-8

Mukoyi, F., T. Soko, E. Mulima, B. Mutari, D. Hodson, L. Herselman, B. Visser and Z. A. Pretorius. 2011. Detection of variants of wheat stem rust race Ug99 (Puccinia graminis f. sp. tritici) in Zimbabwe and Mozambique. Plant Disease, 95: 1188-88. https://doi.org/10.1094/PDIS-04-11-0300 PMid:30732036

Nazari, K., M. Mafi, A. Yahyaoui, R. P. Singh and R. F. Park. 2009. Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Disease, 93: 317-17. https://doi.org/10.1094/PDIS-93-3-0317B PMid:30764212

Newcomb, M., P. D. Olivera, M. N. Rouse, L. J. Szabo, J. Johnson, S. Gale, D. G. Luster, R. Wanyera, G. Macharia and S. Bhavani. 2016. Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology, 106: 729-36. https://doi.org/10.1094/PHYTO-12-15-0337-R PMid:27019064

Niu, Z., D. L. Klindworth, T. L. Friesen, S. Chao, Y. Jin, X. Cai and S. S. Xu. 2011. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics, 187: 1011-21. https://doi.org/10.1534/genetics.110.123588 PMid:21242535 PMCid:PMC3070511

Olivera Firpo, P. D., M. Newcomb, K. Flath, N. Sommerfeldt-Impe, L. J. Szabo, M. Carter, D. G. Luster and Y. Jin. 2017. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathology, 66: 1258-66. https://doi.org/10.1111/ppa.12674

Olivera, P., M. Newcomb, L. J. Szabo, M. Rouse, J. Johnson, S. Gale, D. G. Luster, D. Hodson, J. A. Cox, L. Burgin, M. Hort, C. A. Gilligan, M. Patpour, A. F. Justesen, M. S. Hovmøller, G. Woldeab, E. Hailu, B. Hundie, K. Tadesse, M. Pumphrey, R. P. Singh and Y. Jin. 2015. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-14. Phytopathology, 105: 917-28. https://doi.org/10.1094/PHYTO-11-14-0302-FI PMid:25775107

Olivera, P. D., Y. Jin, M. Rouse, A. Badebo, T. Fetch, R. P. Singh and A. Yahyaoui. 2012. Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Disease, 96: 623-28. https://doi.org/10.1094/PDIS-09-11-0793 PMid:30727519

Olivera, P. D., M. N. Rouse and Y. Jin. 2018. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of Wheat. Frontiers in Plant Science, 9: 1-7. https://doi.org/10.3389/fpls.2018.01719 PMid:30524466 PMCid:PMC6262079

Olson, E. L., M. N. Rouse, M. O. Pumphrey, R. L. Bowden, B. S. Gill and J. A. Poland. 2013a. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theoretical and Applied Genetics, 126: 2477-84. https://doi.org/10.1007/s00122-013-2148-z PMid:23864229

Olson, E. L., M. N. Rouse, M. O. Pumphrey, R. L. Bowden, B. S. Gill and J. A. Poland. 2013b. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theoretical and Applied Genetics, 126: 1179-88. https://doi.org/10.1007/s00122-013-2045-5 PMid:23377571

Ortiz, R., H.-J. Braun, J. Crossa, J. H. Crouch, G. Davenport, J. Dixon, S. Dreisigacker, E. Duveiller, Z. He, J. Huerta, A. K. Joshi, M. Kishii, P. Kosina, Y. Manes, M. Mezzalama, A. Morgounov, J. Murakami, J. Nicol, G. Ortiz Ferrara, J. I. Ortiz-Monasterio, T. S. Payne, R. J. Peña, M. P. Reynolds, K. D. Sayre, R. C. Sharma, R. P. Singh, J. Wang, M. Warburton, H. Wu and M. Iwanaga. 2008. Wheat genetic resources enhancement by the International maize and wheat improvement center (CIMMYT). Genetic Resources and Crop Evolution, 55: 1095-140. https://doi.org/10.1007/s10722-008-9372-4

Pardey, P. G., J. M. Beddow, D. J. Kriticos, T. M. Hurley, R. F. Park, E. Duveiller, R. W. Sutherst, J. J. Burdon and D. Hodson. 2013. Right-sizing stemrRust research. Science, 340: 147-48. https://doi.org/10.1126/science.122970 PMid:23580514

Park, R., T. Fetch, D. Hodson, Y. Jin, K. Nazari, M. Prashar and Z. Pretorius. 2011. International surveillance of wheat rust pathogens: Progress and challenges. Euphytica, 179: 109-17. https://doi.org/10.1007/s10681-011-0375-4

Patpour, M., M. S. Hovmøller, A. A. Shahin, M. Newcomb, P. Olivera, Y. Jin, D. Luster, D. Hodson, K. Nazari and M. Azab. 2016. First report of the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Egypt in 2014. Plant Disease, 100: 863-63. https://doi.org/10.1094/PDIS-08-15-0938-PDN

Periyannan, S. K., U. K. Bansal, H. S. Bariana, M. Pumphrey and E. S. Lagudah. 2010. A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat. Theoretical and Applied Genetics, 122: 1-7. https://doi.org/10.1007/s00122-010-1417-3 PMid:20680609

Pretorius, Z. A., C. M. Bender, B. Visser and T. Terefe. 2010. First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Disease, 94: 784-84. https://doi.org/10.1094/PDIS-94-6-0784C PMid:30754342

Pretorius, Z. A., R. P. Singh, W. W. Wagoire and T. S. Payne. 2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Disease, 84: 203-03. https://doi.org/10.1094/PDIS.2000.84.2.203B PMid:30841334

Pretorius, Z. A., L. J. Szabo, W. H. P. Boshoff, L. Herselman and B. Visser. 2012. First report of a new TTKSF race of wheat stem rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease, 96: 590-90. https://doi.org/10.1094/PDIS-12-11-1027-PDN PMid:30727416

Qi, L. L., M. O. Pumphrey, B. Friebe, P. Zhang, C. Qian, R. L. Bowden, M. N. Rouse, Y. Jin and B. S. Gill. 2011. A novel robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 123: 159-67. https://doi.org/10.1007/s00122-011-1574-z PMid:21437597

Rahmatov, M., M. N. Rouse, B. J. Steffenson, S. C. Andersson, R. Wanyera, Z. A. Pretorius, A. Houben, N. Kumarse, S. Bhavani and E. Johansson. 2016. Sources of stem rust resistance in wheat-alien introgression lines. Plant Disease, 100: 1101-09. https://doi.org/10.1094/PDIS-12-15-1448-RE PMid:30682285

Randhawa, M. S., N. S. Bains, V. S. Sohu, P. Chhuneja, R. M. Trethowan, H. S. Bariana and U. Bansal. 2019. Marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. Agronomy, 9: 1-10. https://doi.org/10.3390/agronomy9090497

Roelfs, A. P. 1988. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology, 78: 526-33. https://doi.org/10.1094/Phyto-78-526

Roelfs, A. P., R. P. Singh and E. E. Saari. 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT: Mexico.

Rouse, M. N., I. C. Nava, S. Chao, J. A. Anderson and Y. Jin. 2012. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 125: 877-85. https://doi.org/10.1007/s00122-012-1879-6 PMid:22584633

Rouse, M. N., R. Wanyera, P. Njau and Y. Jin. 2011. Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Disease, 95: 762-66. https://doi.org/10.1094/PDIS-12-10-0940 PMid:30731910

Saari, E. E. and J. M. Prescott. 1985. World distribution in relation to economic losses Diseases, Distribution, Epidemiology, and Control. Elsevier. pp. 259-98. https://doi.org/10.1016/B978-0-12-148402-6.50017-1

Sandiswa, F., L. R. Cobus, T. Tarekegn, B. Willem, V. Botma, S. Hussein and T. Toi. 2014. Wheat stem rust in South Africa: Current status and future research directions. African Journal of Biotechnology, 13: 4188-99. https://doi.org/10.5897/AJB2014.14100

Schmid, R. and P. D. Peterson. 2001. Stem rust of wheat: From ancient enemy to modern foe. Taxon, 50: 1295. https://doi.org/10.2307/1224769

Schneider, A., I. Molnár and M. Molnár-Láng. 2007. Utilisation of aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163: 1-19. https://doi.org/10.1007/s10681-007-9624-y

Schumann, G. L. and K. J. Leonard. 2000. Stem rust of wheat (black rust). The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-0721-01

Shamanin, V., E. Salina, Y. Zelenskiv, A. Kokhmetova, M. Patpour and M. Holmoller. 2018. Large scale wheat stem rust outbreaks in Western Siberia/Northern Kazakhstan in 2015-2017. In Proceedings of the BGRI 2018 Technical Workshop.

Simons, K., Z. Abate, S. Chao, W. Zhang, M. Rouse, Y. Jin, E. Elias and J. Dubcovsky. 2010. Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theoretical and Applied Genetics, 122: 649-58. https://doi.org/10.1007/s00122-010-1444-0 PMid:20857083 PMCid:PMC4755715

Singh, R., D. P. Hodson, Y. Jin, J. Huerta-Espino, M. G. Kinyua, R. Wanyera, P. Njau and R. W. Ward. 2006. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1: 1-13. https://doi.org/10.1079/PAVSNNR20061054

Singh, R. P., D. P. Hodson, J. Huerta-Espino, Y. Jin, S. Bhavani, P. Njau, S. Herrera-Foessel, P. K. Singh, S. Singh and V. Govindan. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49: 465-81. https://doi.org/10.1146/annurev-phyto-072910-095423 PMid:21568701

Singh, R. P., D. P. Hodson, J. Huerta-Espino, Y. Jin, P. Njau, R. Wanyera, S. A. Herrera-Foessel and R. W. Ward. 2008a. Will stem rust destroy the world's wheat crop? Advances in Agronomy, 98: 271-309. https://doi.org/10.1016/S0065-2113(08)00205-8

Singh, R. P., D. P. Hodson, J. Huerta-Espino, Y. Jin, P. Njau, R. Wanyera, S. A. Herrera-Foessel and R. W. Ward. 2008b. Will stem rust destroy the world's wheat crop? In, Advances in Agronomy. Elsevier. https://doi.org/10.1016/S0065-2113(08)00205-8

Singh, R. P., D. P. Hodson, Y. Jin, E. S. Lagudah, M. A. Ayliffe, S. Bhavani, M. N. Rouse, Z. A. Pretorius, L. J. Szabo, J. Huerta-Espino, B. R. Basnet, C. Lan and M. S. Hovmøller. 2015. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology, 105: 872-84. https://doi.org/10.1094/PHYTO-01-15-0030-FI PMid:26120730

Singla, J. and S. G. Krattinger. 2016. Biotic stress resistance genes in wheat. In, Encyclopedia of Food Grains. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00229-8

Spielmeyer, W., P. J. Sharp and E. S. Lagudah. 2003. Identification and validation of markers linked to broad-spectrum stem rust resistance gene in wheat. Crop Science, 43: 333-36. https://doi.org/10.2135/cropsci2003.0333

Stuthman, D. D., K. J. Leonard and J. Miller‐Garvin. 2007. Breeding crops for durable resistance to disease. In, Advances in Agronomy. Elsevier. https://doi.org/10.1016/S0065-2113(07)95004-X

Tanksley, S. D. and S. R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277: 1063-66. https://doi.org/10.1126/science.277.5329.1063 PMid:9262467

Ul Haq, I. and S. Ijaz. 2020. History and recent trends in plant disease control: An overview. In, Sustainability in Plant and Crop Protection. Springer International Publishing. https://doi.org/10.1007/978-3-030-35955-3_1

Villa, T. C. C., N. Maxted, M. Scholten and B. Ford-Lloyd. 2005. Defining and identifying crop landraces. Plant Genetic Resources, 3: 373-84. https://doi.org/10.1079/PGR200591

Waqar, A., S. H. Khattak, S. Begum, T. Rehman, R. Rabia, A. Shehzad, W. Ajmal, S. S. Zia, I. Siddiqi and G. M. Ali. 2018. Stripe rust: A review of the disease, Yr genes and its molecular markers. Sarhad Journal of Agriculture, 34: 188-201. https://doi.org/10.17582/journal.sja/2018/34.1.188.201

Warburton, M. L., J. Crossa, J. Franco, M. Kazi, R. Trethowan, S. Rajaram, W. Pfeiffer, P. Zhang, S. Dreisigacker and M. v. Ginkel. 2006. Bringing wild relatives back into the family: Recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 149: 289-301. https://doi.org/10.1007/s10681-005-9077-0

Wu, X.-L., J.-W. Wang, Y.-K. Cheng, X.-L. Ye, W. Li, Z.-E. Pu, Q.-T. Jiang, Y.-M. Wei, M. Deng, Y.-L. Zheng and G.-Y. Chen. 2016. Inheritance and molecular mapping of an all-stage stripe rust resistance gene derived from the Chinese common wheat landrace "Yilongtuomai". Journal of Heredity, 107: 463-70. https://doi.org/10.1093/jhered/esw032 PMid:27208148

Xu, S. S., Y. Jin, D. L. Klindworth, R. R. C. Wang and X. Cai. 2009. Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Science, 49: 2167-75. https://doi.org/10.2135/cropsci2009.02.0074

Yu, L.-X., A. Lorenz, J. Rutkoski, R. P. Singh, S. Bhavani, J. Huerta-Espino and M. E. Sorrells. 2011. Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theoretical and Applied Genetics, 123: 1257-68. https://doi.org/10.1007/s00122-011-1664-y PMid:21811818

Zeng, Q.-D., D.-J. Han, Q.-L. Wang, F.-P. Yuan, J.-H. Wu, L. Zhang, X.-J. Wang, L.-L. Huang, X.-M. Chen and Z.-S. Kang. 2014. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 196: 271-84. https://doi.org/10.1007/s10681-013-1030-z


Full Text: PDF

DOI: 10.33687/phytopath.010.01.3487

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Amir Afzal, Sayad Rashad Ali, Muhammad Ijaz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.