Evaluation of Major and Environmentally Driven Genes for Resistance in Pakistani Wheat Landraces and their Prospected Potential against Yellow Rust

Muhammad Tariq-Khan, Muhammad T. Younas, Javed I. Mirza, Shahid I. Awan, Muhammad Jameel, Muhammad Saeed, Basharat Mahmood

Abstract


Yellow rust is caused by Pst (Puccinia striiformis tritici), the most devastating wheat disease with continuous challenge of emerging virulences breaking vertical resistance worldwide resulting in epidemics. Vertical resistance genes incorporation is a sustainable, economical and environment-friendly approach to control rust diseases. Wheat landraces (WLR) acquired vertical resistance through long time exposure of host-pathogen survival competition in a specific area having unique agronomic traits, genetic base and resistance against biotic and abiotic agents can be an exploitable commodity for future food production. Fifty Pakistani WLRs already with known vertical resistance were screened against 7 potential Pakistani Pst races at seedling stage under glasshouse conditions to postulate resistance genes. Resistance magnitude was compared among the landraces. Six genes Yr1, Yr8, Yr9, Yr43, Yr44, and YrTr1 were successfully postulated either singly or in combination along with unidentified genes in 45 landraces. Pakistani Pst races are avirulent to Yr5, Yr10Yr15Yr24Yr32, YrSp and YrTye. Most frequently postulated genes are Yr44 found in 22 genotypes, YrTr1 in 21, Yr9 in 19, Yr43 in 18, Yr8 and Yr1 in 14 wheat landraces. Multiple Yr gene pyramiding was observed in (B-74, B-281, B-530) with the presence of Yr8, Yr9, Yr43, Yr44, and YrTr1 and single gene were postulated from 12 genotypes. WLRs (B-03, B-158, B-160, B-171) reaction was immune showing presence of novel Yr genes. The study provides information regarding yellow rust resistance genes originated independently against localized Pst races with desirable agronomic traits since long and can be an option for food security in changing environmental challenges.

Keywords


Wheat Landraces; Yellow rust races; Gene postulation; Resistance; Virulence; Infection Type

References


Ali, D. E. B., T. P. Monneveux and J. L. Araus. 1992. Drought adaptation and the concept of aids in durum wheat. II: Physiological characteristics of adaptation. Agronomy, 12: 381-93. https://doi.org/10.1051/agro:19920504

Altieri, M. A. and L. Merrick. 1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany, 41: 86-96. https://doi.org/10.1007/BF02859354

Anmin, W., W. Liren, J. Qiuzhen, J. Shelin, L. Gaobao, W. Baotong, Y. Ge, Y. Y. Jiaxiu and H. Zhonghu. 2004. Monitoring virulence variability in Puccinia striiformis f. sp. tritici of wheat during 2000-2002 in China Second Stripe Rust Conference for Central and West Asia and North Africa. ICARDA. Islamabad, Pakistan.

Awan, S. I., S. D. Ahmad, L. Mur and M. S. Ahmed. 2017. Marker-assisted selection for durable rust resistance in a widely adopted wheat cultivar" Inqilab-91". International Journal of Agriculture and Biology, 19: 1319-24.

Belay, G., T. Tesemma, E. Bechere and D. Mitiku. 1995. Natural and human selection for purple-grain tetraploid wheats in the Ethiopian highlands. Genetic Resources and Crop Evolution, 42: 387-91. https://doi.org/10.1007/BF02432143

Brown, A. H. D. 2000. The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: S. B. Brush (ed.), Genes in the Field: On-Farm Conservation of Crop Diversity. Lewis Publishers: Boca Raton, FL, USA. https://doi.org/10.1201/9781420049824.sec2

Chen, W., C. Wellings, X. Chen, Z. Kang and T. Liu. 2014. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 15: 433-46. https://doi.org/10.1111/mpp.12116

Chen, X. 1992. Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology, 82: 633-37. https://doi.org/10.1094/Phyto-82-633

Chen, X.. 1995a. Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars heines VII, Clement, Moro, Tyee, Tres, and Daws. Phytopathology, 85: 1362-67. https://doi.org/10.1094/Phyto-85-1362

Chen, X.. 1995b. Gene action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology, 85: 567-72. https://doi.org/10.1094/Phyto-85-567

Cheng, P. and X. M. Chen. 2010. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theoretical and Applied Genetics, 121: 195-204. https://doi.org/10.1007/s00122-010-1302-0

Dawit, W., K. Flath, W. E. Weber, E. Schumann, M. S. Röder and X. Chen. 2012. Postulation and mapping of seedling stripe rust resistance genes in Ethiopian bread wheat cultivars. Journal of Plant Pathology, 94: 403-09.

Dubin, H. J. 1989. Postulated genes for resistance to stripe rust in selected CIMMYT and related wheats. Plant disease, 73: 472-75. https://doi.org/10.1094/PD-73-0472

Ehdaie, B. and J. G. Waines. 1989. Genetic variation, heritability and path-analysis in landraces of bread wheat from southwestern Iran. Euphytica, 41: 183-90.

Feng, J., Z.-y. Zhang, R.-m. Lin and S.-c. Xu. 2009. Postulation of seedling resistance genes in 20 wheat cultivars to yellow rust (Puccinia striiformis f. sp. tritici). Agricultural Sciences in China, 8: 1429-39. https://doi.org/10.1016/S1671-2927(08)60356-9

Flor, H. H. 1971. Current status of the gene-for-gene concept. Annual review of phytopathology, 9: 275-96. https://doi.org/10.1146/annurev.py.09.090171.001423

Gebreslasie, Z. S., S. Huang, G. Zhan, A. Badebo, Q. Zeng, J. Wu, Q. Wang, S. Liu, L. Huang, X. Wang, Z. Kang and D. Han. 2020. Stripe rust resistance genes in a set of Ethiopian bread wheat cultivars and breeding lines. Euphytica, 216: 1-14. https://doi.org/10.1007/s10681-019-2541-z

Hovmøller, M. S. 2007. Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheats. Plant Breeding, 126: 225-33. https://doi.org/10.1111/j.1439-0523.2007.01369.x

Jaradat, A. 2013. Wheat landraces: A mini review. Emirates Journal of Food and Agriculture, 25: 20-29. https://doi.org/10.9755/ejfa.v25i1.15376

Kirmani, M. A. S., S. S. A. Rizvi and R. W. Stubbs. 1984. Postulated genotypes for stripe rust resistance in wheat cultivars of Pakistan Proceedings of the Sixth European and Mediterranean Cereal Rusts Conference. Grignon, France. pp. 81-85.

Krattinger, S. G., E. S. Lagudah, W. Spielmeyer, R. P. Singh, J. Huerta-Espino, H. McFadden, E. Bossolini, L. L. Selter and B. Keller. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323: 1360-63. https://doi.org/10.1126/science.1166453

Line, R. F. and A. Qayoum. 1992. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North AmericaAgricultural Research Service. United States Department of Agriculture. United States.

Masood, M. S., A. Javaid, M. A. Rabbani and R. Anwar. 2005. Phenotypic diversity and trait association in bread wheat (Triticum aestivum L.) landraces from Baluchistan, Pakistan. Pakistan Journal of Botany, 37: 949-57.

McIntosh, R. A., C. R. Wellings and R. F. Park. 1995. The genes for resistance to stripe rust in wheat and triticale Wheat Rusts. Springer Netherlands. pp. 149-78. https://doi.org/10.1007/978-94-011-0083-0_4

McNeal, F. H., C. F. Konzak, E. P. Smith, W. S. Tate and T. S. Russell. 1971. A uniform system for recording and processing cereal research dataAgricultural Research Service Bulletin, United States department of Agriculture. Washington, USA. pp. 34-121.

Ochoa, J. B., D. L. Danial and B. Paucar. 2006. Virulence of wheat yellow rust races and resistance genes of wheat cultivars in Ecuador. Euphytica, 153: 287-93. https://doi.org/10.1007/s10681-006-9230-4

Pathan, A. K. and R. F. Park. 2006. Evaluation of seedling and adult plant resistance to leaf rust in European wheat cultivars. Euphytica, 149: 327-42. https://doi.org/10.1007/s10681-005-9081-4

Qamar, M., S. D. Ahmad, A. H. Shah, C. R. Wellings and F. Batool. 2008. Postulation of stripe rust resistant genes in some Australian bread wheat cultivars and their response to temperature. Pakistan Journal of Botany, 40: 2573-85.

Qamar, M., D. A. Gardezi and M. Iqbal. 2012. Determination of rust resistance gene complex Lr34/Yr18 in spring wheat and its effect on components of partial resistance. Journal of Phytopathology, 160: 628-36. https://doi.org/10.1111/j.1439-0434.2012.01957.x

Riley, R., V. Chapman and R. Johnson. 1968. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genetical Research, 12: 199-219. https://doi.org/10.1017/S0016672300011800

Rizwan, S., I. Ahmad, M. Ashraf, G. M. Sahi, J. I. Mirza, A. Ratto and A. Mujeeb-Kazi. 2007. New sources of wheat yellow rust (Puccinia striiformis f.s. tritici) seedling resistance. Pakistan Journal of Botany, 39: 595-602.

Rizwan, S., A. Iftikhar, A. M. Kazi, G. M. Sahi, J. I. Mirza, R. Attiq ur and M. Ashraf. 2010. Virulence variation of Puccinia striiformis Westend. f. sp. tritici in Pakistan. Archives Of Phytopathology And Plant Protection, 43: 875-82. https://doi.org/10.1080/03235400802075542

Saari, E. E. 1995. The current stripe rust status in south Asia Proceeding of Wheat Research Reports.

Singh, D., R. F. Park and R. A. McIntosh. 2001. Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica, 120: 205-18.

Siyoum, G. Z., Q. Zeng, J. Zhao, X. Chen, A. Badebo, Y. Tian, L. Huang, Z. Kang and G. Zhan. 2019. Inheritance of virulence and linkages of virulence genes in an Ethiopian isolate of the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) determined through sexual recombination on Berberis holstii (Retracted). Plant disease, 103: 2451-59. https://doi.org/10.1094/PDIS-02-19-0269-RE

Stubbs, R. W. 1985. Stripe Rust. In: A.P. Roelfs and W.R Bushnell (eds.), Cereal Rusts. Academic Press: New York, USA.

Sui, X. X., M. N. Wang and X. M. Chen. 2009. Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology, 99: 1209-15. https://doi.org/10.1094/PHYTO-99-10-1209

Tariq-Khan, M. and M. I. Ul-Haque. 2011. Elite-II synthetic hexaploid wheats as a potential source of resistance against yellow rust. Archives of Phytopathology and Plant Protection, 44: 1165-70. https://doi.org/10.1080/03235408.2010.484939

Tariq-Khan, M., M. I. Ul-Haque, M. Z. Kayani, A. U. R. Rattu and A. Mujeeb-Kazi. 2012. Synthetic hexaploid wheats as a novel source of genetic diversity and resistance against yellow rust. Pakistan Journal of Botany, 44: 1147-52. https://doi.org/10.1080/03235408.2010.484939

Wamalwa, M. N., J. Owuoche, J. Ogendo and R. Wanyera. 2019. Multi-pathotype testing of selected Kenyan wheat germplasm and Watkin landraces for resistance to wheat stripe rust (Puccinia striiformis f. sp. tritici) races. Agronomy, 9: 770. https://doi.org/10.3390/agronomy9110770

Wan, A., X. Chen and J. Yuen. 2016. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant disease, 100: 966-75. https://doi.org/10.1094/PDIS-10-15-1122-RE

Wellings, C. R. 2011. Global status of stripe rust: A review of historical and current threats. Euphytica, 179: 129-41. https://doi.org/10.1007/s10681-011-0360-y

Wu, X.-L., J.-W. Wang, Y.-K. Cheng, X.-L. Ye, W. Li, Z.-E. Pu, Q.-T. Jiang, Y.-M. Wei, M. Deng, Y.-L. Zheng and G.-Y. Chen. 2016. Inheritance and molecular mapping of an all-stage stripe rust resistance gene derived from the Chinese common wheat landrace "Yilongtuomai". Journal of Heredity, 107: 463-70. https://doi.org/10.1093/jhered/esw032

Xiaodan, X., F. Jing, R. Lin, K. Hussain, S. X. and L. Feng. 2011. Postulation of stripe rust resistance genes in 44 Chinese wheat cultivars. International Journal of Agriculture and Biology, 13: 5-10.

Zencirci, N. and A. Karagoz. 2005. Effect of developmental stages length on yield and some quality traits of Turkish durum wheat (Triticum turgidum L. Convar. durum (Desf.) Mackey) landraces: Influence of developmental stages length on yield and quality of durum wheat. Genetic Resources and Crop Evolution, 52: 765-74. https://doi.org/10.1007/s10722-004-6146-5

Zeven, A. C. 1999. The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: A review. Euphytica, 110: 181-91. https://doi.org/10.1023/A:1003701529155

Zhou, X. L., D. J. Han, X. M. Chen, H. L. Gou, S. J. Guo, L. Rong, Q. L. Wang, L. L. Huang and Z. S. Kang. 2014. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theoretical and Applied Genetics, 127: 2349-58. https://doi.org/10.1007/s00122-014-2381-0


Full Text: PDF

DOI: 10.33687/phytopath.009.03.3412

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Muhammad Tariq-Khan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.