Antibacterial Activity of Some Essential Oils on Bacterial Spot Disease of Tomato Plant Caused by Xanthomonas axonopodis pv. vesicatoria
Abstract
Bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria is considered one of the major diseases of tomato crop worldwide. The objective of this paper was to study the effect of certain essential oils (EOs), lemongrass, oleum and thyme, on X. axonopodis pv. vesicatoria (PHYX14) for controlling bacterial spot disease in tomato plants. The tested three essential oils (EOs) showed antibacterial activity in vitro test at 1:10 concentration against the PHYX14.Thyme oil exhibited the highest inhibition against PHYX14 followed by lemongrass and finally oleum. Under greenhouse conditions, the effect of EOs on the bacterial spot of tomato was evaluated on tomato seedlings. Thyme oil exhibited the highest reducing of tomato bacterial spot followed oleum and then lemongrass. Results indicated that the application of the tested (EOs) to tomato plants two days after the infection caused the highest reduction of disease severity. While the application of oleum oil exhibited the highest induction of the oxidative enzymes, peroxidase (PO) and polyphenol enzyme (PPO). Also increased total phenolic contents of tomato leaves followed lemongrass and then thyme oil as compared by control. The application of EOs two days before the infection caused the highest induction of PO, PPO enzymes and total phenolic contents in tomato leaves than two days after the inoculation.
Keywords
References
Abdel-Rahim, I. R. and K. A. M. Abo-Elyousr. 2017. Using of endophytic Saccharomycopsis fibuligera and thyme oil for management of gray mold rot of guava fruits. Biological Control, 110: 124-31. https://doi.org/10.1016/j.biocontrol.2017.04.014
Abo-Elyousr, K. A. M. and H. H. El-Hendawy. 2008. Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Protection, 27: 1118-24. https://doi.org/10.1016/j.cropro.2008.01.011
Abreu, C. L. M. d. 2006. Controle de Alternaria solani em tomateiro (Lycopersicon esculentum) com óleos essenciais, Agronomia (Horticultura) - FCA, National Council for Scientific and Technological Development (CNPq). Brasilia, Brazil.
Bajpai, V. K., S.-R. Kang, H. Xu, S.-G. Lee, K.-H. Baek and S.-C. Kang. 2011. Potential Roles of Essential Oils on Controlling Plant Pathogenic Bacteria Xanthomonas Species: A Review. The Plant Pathology Journal, 27: 207-24. https://doi.org/10.5423/ppj.2011.27.3.207
Bradford, M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72: 248-54. https://doi.org/10.1006/abio.1976.9999
Burr, T. J. 2001. Future Development of Chemical and Biological Controls for Bacterial Diseases of Plants Plant Pathogenic Bacteria. Springer Netherlands. pp. 19-23. https://doi.org/10.1007/978-94-010-0003-1_3
Claflin, L. 2003. Control of Pseudomonas syringae pathovars. In: N. S. Iacobellis, A. Collmer, S. W. Hutcheson, J. W. Mansfield, C. E. Morris, J. Murillo, N. W. Schaad, D. E. Stead, G. Surico and M. S. Ullrich (eds.), Compositae: Pseudomonas syringae and Related Pathogens Kluwer, Dordrecht: The Netherlands.
da Silva, R. S., M. M. G. de Oliveira, J. O. de Melo, A. F. Blank, C. B. Corrêa, R. Scher and R. P. M. Fernandes. 2019. Antimicrobial activity of Lippia gracilis essential oils on the plant pathogen Xanthomonas campestris pv. campestris and their effect on membrane integrity. Pesticide Biochemistry and Physiology, 160: 40-48. https://doi.org/10.1016/j.pestbp.2019.06.014
de Meyer, G., J. Bigirimana, Y. Elad and M. Höfte. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104: 279-86. https://doi.org/10.1023/A:1008628806616
EL-Fiki, I. and M. H. El-Habbak. 2016. Effect of Some Commercial Bacteriotoxicants on Development of Bacterial Spot Disease in Tomato Caused by Xanthomonas vesicatoria. Middle East J, 5: 841-55.
Freeman, G. H., K. A. Gomez and A. A. Gomez. 1985. Statistical Procedures for Agricultural Research. Biometrics, 41: 342. https://doi.org/10.2307/2530673
Friedman, M. 1996. Food Browning and Its Prevention: An Overview†. Journal of Agricultural and Food Chemistry, 44: 631-53. https://doi.org/10.1021/jf950394r
Gakuubi, M. M., J. M. Wagacha, S. F. Dossaji and W. Wanzala. 2016. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria. International Journal of Microbiology, 2016: 1-9. https://doi.org/10.1155/2016/7352509
Gauillard, F., F. Richardforget and J. Nicolas. 1993. New Spectrophotometric Assay for Polyphenol Oxidase Activity. Analytical Biochemistry, 215: 59-65. https://doi.org/10.1006/abio.1993.1554
Golan-Goldhirsh, A., J. R. Whitaker and V. Kahn. 1984. Relation Between Structure of Polyphenol Oxidase and Prevention of Browning Advances in Experimental Medicine and Biology. Springer US. pp. 437-56. https://doi.org/10.1007/978-1-4684-4790-3_21
Gormez, A., S. Bozari, D. Yanmis, M. Gulluce, F. Sahin and G. Agar. 2015. Chemical composition and antibacterial activity of essential oils of two species of Lamiaceae against phytopathogenic bacteria. Polish journal of microbiology, 64: 121-27. https://doi.org/10.33073/pjm-2015-018
Holt, J. G., N. Krieg, P. Sneath, J. Staley and W. Stanley. 1994. Manual of determinative bacteriology. MD: Williams and Williams, Baltimore.
Horváth, G., L. Szabó, É. Lemberkovics, L. Botz and B. Kocsis. 2004. Characterization and TLC-bioautographic detection of essential oils from some Thymustaxa. Determination of the activity of the oils and their components against plant pathogenic bacteria. Journal of Planar Chromatography - Modern TLC, 17: 300-04. https://doi.org/10.1556/jpc.17.2004.4.11
Huang, Q. and D. Lakshman. 2010. Effect of clove oil on plant pathogenic bacteria and bacterial wilt of tomato and geranium. Journal of Plant Pathology: 701-07.
Janse, J. D. 2005. Prevention and control of bacterial pathogens and diseases Phytobacteriology: principles and practice. CABI. pp. 149-73. https://doi.org/10.1079/9781845930257.0149
Ji, G.-H., L.-F. Wei, Y.-Q. He, Y.-P. Wu and X.-H. Bai. 2008. Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control, 45: 288-96. https://doi.org/10.1016/j.biocontrol.2008.01.004
Jones, J. B., H. Bouzar, R. E. Stall, E. C. Almira, P. D. Roberts, B. W. Bowen, J. Sudberry, P. M. Strickler and J. Chun. 2000. Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systematic and Evolutionary Microbiology, 50: 1211-19. https://doi.org/10.1099/00207713-50-3-1211
Kalemba, D. and A. Kunicka. 2003. Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10: 813-29. https://doi.org/10.2174/0929867033457719
Krieg, N. and J. Holt. 1984. Bergey's manual of systematic bacteriology, vol 1. Williams and Wilkins. Baltimore London.
Lobo, V. L. d. S., L. d. B. Giordano and C. A. Lopes. 2005. Herança da resistência à mancha-bacteriana em tomateiro. Fitopatologia Brasileira, 30: 343-49. https://doi.org/10.1590/s0100-41582005000400002
Lucas, G. C., E. Alves, R. B. Pereira, F. J. Perina and R. M. d. Souza. 2012. Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesquisa Agropecuária Brasileira, 47: 351-59. https://doi.org/10.1590/s0100-204x2012000300006
Malamy, J., J. Hennig and D. F. Klessig. 1992. Temperature-Dependent Induction of Salicylic Acid and Its Conjugates during the Resistance Response to Tobacco Mosaic Virus Infection. The Plant Cell: 359-66. https://doi.org/10.1105/tpc.4.3.359
Malik, C. P. and M. Singh. 1980. Plant enzymology and histo-enzymology Kalyani Publishers: India.
McGuire, R. G. and A. Kelman. 1984. Reduced severity of erwinia soft rot in potato tubers with increased calcium content. Phytopathology, 74: 1250-56. https://doi.org/10.1094/phyto-74-1250
McManus, P. S., V. O. Stockwell, G. W. Sundin and A. L. Jones. 2002. Antibioticuse in plant agriculture. Annual Review of Phytopathology, 40: 443-65. https://doi.org/10.1146/annurev.phyto.40.120301.093927
Nguefack, J., I. Somda, C. N. Mortensen and P. H. Amvam Zollo. 2005. Evaluation of five essential oils from aromatic plants of Cameroon for controlling seed-borne bacteria of rice (Oryza sativa L.). Seed Science and Technology, 33: 397-407. https://doi.org/10.15258/sst.2005.33.2.12
Oliveira, C. M., A. C. S. Ferreira, V. De Freitas and A. M. S. Silva. 2011. Oxidation mechanisms occurring in wines. Food Research International, 44: 1115-26. https://doi.org/10.1016/j.foodres.2011.03.050
Patharakorn, T., T. Arpornsuwan, N. Wetprasit, A. Promboon and S. Ratanapo. 2010. Antibacterial activity and cytotoxicity of the leaf essential oil of Morus rotunbiloba Koidz. Journal of Medicinal Plants Research, 4: 837-43.
Pereira, R. B., G. C. Lucas, F. J. Perina and E. Alves. 2012. Essential oils for rust control on coffee plants. Ciência e Agrotecnologia, 36: 16-24. https://doi.org/10.1590/s1413-70542012000100002
Popović, T., I. Kostić, Z. Milićević, K. Gašić, M. Kostić, M. Dervišević and S. Krnjajić. 2017. Essential oils as an alternative bactericides against soft-rot bacteria, Pectobacterium carotovorum subsp. carotovorum VIII International Scientific Agriculture Symposium," Agrosym 2017", Jahorina, Bosnia and Herzegovina, October 2017. Book of Proceedings. Faculty of Agriculture, University of East Sarajevo. pp. 1377-83.
Pradhanang, P. M., J. G. Elphinstone and R. T. V. Fox. 2000. Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathology, 49: 414-22. https://doi.org/10.1046/j.1365-3059.2000.00481.x
Rodríguez, H., L. Aguilar and M. LaO. 1997. Variations in xanthan production by antibiotic-resistant mutants of Xanthomonas campestris. Applied Microbiology and Biotechnology, 48: 626-29. https://doi.org/10.1007/s002530051106
Rolff, M., J. Schottenheim, H. Decker and F. Tuczek. 2011. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chemical Society Reviews, 40: 4077. https://doi.org/10.1039/c0cs00202j
Todorović, B., I. Potočnik, E. Rekanović, M. Stepanović, M. Kostić, M. Ristić and S. Milijašević-Marčić. 2016. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms. Journal of Environmental Science and Health, Part B, 51: 832-39. https://doi.org/10.1080/03601234.2016.1208462
Tripathi, N. N. and N. Kumar. 2007. Putranjiva roxburghii oil-A potential herbal preservative for peanuts during storage. Journal of Stored Products Research, 43: 435-42. https://doi.org/10.1016/j.jspr.2006.11.005
Urbanek, H., E. Kuzniak-Gebarowska and K. Herka. 1991. Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologiae Plantarum (Poland).
van Gelder, C. W. G., W. H. Flurkey and H. J. Wichers. 1997. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry, 45: 1309-23. https://doi.org/10.1016/s0031-9422(97)00186-6
Vancheva, T., M. Encheva, M. Tatyozova, V. Gochev, M. Stoyanova and P. Moncheva. 2015. Antimicrobial activity of essential oils against pepper bacterial spot agents. Annuaire de l'Université de Sofia" St. Kliment Ohridski, 100: 200-07.
White, D. G., S. Zhao, S. Simjee, D. D. Wagner and P. F. McDermott. 2002. Antimicrobial resistance of foodborne pathogens. Microbes and Infection, 4: 405-12. https://doi.org/10.1016/s1286-4579(02)01554-x
Wong, D. W. 1989. Mechanism and theory in food chemistry Springer: Berlin, Germany.
DOI: 10.33687/phytopath.008.02.2967
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Hadeel Magdy, Kamal A. M. Abo-Elyousr
This work is licensed under a Creative Commons Attribution 4.0 International License.