Detection and Characterization of Botrytis cinerea Isolates from Vegetable Crops in Egypt

Mahmoud A Gaber, Elsayed E. Wagih, Mohamed R. A. Shehata, Magda M. Fahmy, Hala Abdel Wahab


Botrytis cinerea is a necrotrophic plant pathogenthat causes plenty of crop losses in Egypt and worldwide. Fifteen isolates of B. cinerea were collected from cabbage, pepper and lettuce grown in different locations in Egypt and subjected to investigation. Diversity in phenotypic, pathological and molecular characteristics was detected among isolates,leading to categorizing them into different groups. Molecular variation was demonstrated in all isolates by transposable elements (TEs) analyses. Four TE types, based on the presence or absence of two transposable elements, boty and flipper, were recognized among B. cinerea isolates in which transposa type (having both TEs, boty + flipper) was predominant (40%), while only boty and only flipper types appeared with distribution values of 26.7 and 20%, respectively and vacuma type (Lacking both TEs) showed the lowest distribution value (13.3%). Furthermore, vacuma population demonstrated the lowest pathogenic potential comparing to others. A correlation was found between TE type and virulence level of isolate, but no impact of TE type was observed on phenotypic characteristics of B. cinerea.


Gray mold; Molecular divergence; Transposable elements; Pathogenesis; Vegetable crops


Abdel Wahab, H. 2015. Characterization of Egyptian Botrytis cinerea isolates from different host plants. Advances in Microbiology, 05: 177-89.

Abdel Wahab, H. and N. S. Helal. 2013. Evaluation of pre-harvest bioagent applications for both production and biological control of onion and strawberry plants under natural Botrytis infections. African Journal of Plant Science and Biotechnology, 7: 64-69.

Aboelghar, M., M. S. Moustafa, A. M. Ali and H. Abdel Wahab. 2019. Hyperspectral analysis of Botrytis cinerea infected lettuce. EPH-International Journal of Agriculture and Environmental Research, 5: 26-42.

Brandhoff, B., A. Simon, A. Dornieden and J. Schumacher. 2017. Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Current Genetics, 63: 931-49.

Buttner, P., F. Koch, K. Voigt, T. Quidde, S. Risch, R. Blaich, B. Brckner and P. Tudzynski. 1994. Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Current Genetics, 25: 445-50.

Chardonnet, C. O., C. E. Sams, R. N. Trigiano and W. S. Conway. 2000. Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology, 90: 769-74.

Davis, R. M., K. V. Subbarao, R. N. Raid and E. A. Kurtz. 1997. Compendium of Lettuce Diseases APS Press: St. Paul, MN, USA.

Diolez, A., F. Marches, D. Fortini and Y. Brygoo. 1995. Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Applied and Environmental Microbiology, 61: 103-08.

Dufresne, M., A. Hua-Van, H. Abdel Wahab, S. B. M'Barek, C. Vasnier, L. Teysset, G. H. J. Kema and M.-J. Daboussi. 2006. Transposition of a fungal miniature inverted-repeat transposable element through the action of a Tc1-like transposase. Genetics, 175: 441-52.

Esterio, M., G. Muñoz, C. Ramos, G. Cofré, R. Estévez, A. Salinas and J. Auger. 2011. Characterization of Botrytis cinerea isolates present in thompson seedless table grapes in the central valley of Chile. Plant Disease, 95: 683-90.

Fournier, E., T. Giraud, A. Loiseau, D. Vautrin, A. Estoup, M. Solignac, J. M. Cornuet and Y. Brygoo. 2002. Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes, 2: 253-55.

Giraud, T., D. Fortini, C. Levis, P. Leroux and Y. Brygoo. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology and Evolution, 14: 1177-85.

Kumari, S., P. Tayal, E. Sharma and R. Kapoor. 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiological Research, 169: 862-72.

Leifert, C., D. C. Sigee, R. Stanley, C. Knight and H. A. S. Epton. 1993. Biocontrol of Botrytis cinerea and Alternaria brassicicola on Dutch white cabbage by bacterial antagonists at cold-store temperatures. Plant Pathology, 42: 270-79.

Levis, C., D. Fortini and Y. Brygoo. 1997. Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Molecular and General Genetics MGG, 254: 674-80.

LÓPez‐Berges, M. S., A. Di Pietro, M. J. Daboussi, H. Abdel Wahab, C. Vasnier, M. I. G. Roncero, M. Dufresne and C. Hera. 2009. Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large‐scale transposon tagging. Molecular Plant Pathology, 10: 95-107.

Ma, Z. and T. J. Michailides. 2005. Genetic structure of Botrytis cinerea populations from different host plants in California. Plant Disease, 89: 1083-89.

Martinez, F., B. Dubos and M. Fermaud. 2005. The Role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards. Phytopathology, 95: 692-700.

Möller, E. M., G. Bahnweg, H. Sandermann and H. H. Geiger. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20: 6115-16.

Moyano, C., C. Alfonso, J. Gallego, R. Raposo and P. Melgarejo. 2003. Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. European Journal of Plant Pathology, 109: 515-22.

Muñoz, C., S. Gómez Talquenca, E. Oriolani and M. Combina. 2010. Genetic characterization of grapevine-infecting Botrytis cinerea isolates from Argentina. Revista Iberoamericana de Micología, 27: 66-70.

Pedras, M. S. C., S. Hossain and R. B. Snitynsky. 2011. Detoxification of cruciferous phytoalexins in Botrytis cinerea: Spontaneous dimerization of a camalexin metabolite. Phytochemistry, 72: 199-206.

Rigotti, S. 2002. Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragaria ananassa Duch.) using PCR. FEMS Microbiology Letters, 209: 169-74.

Samuel, S., T. Veloukas, A. Papavasileiou and G. S. Karaoglanidis. 2012. Differences in frequency of transposable elements presence in Botrytis cinerea populations from several hosts in Greece. Plant Disease, 96: 1286-90.

Schilling, J., J. Vivekananda, M. A. Khan and N. Pandey. 2013. Vulnerability to environmental risks and effects on community resilience in mid-west Nepal and south-east Pakistan. Environment and Natural Resources Research, 3: 27-30.

Villa-Rojas, R., M. E. Sosa-Morales, A. López-Malo and J. Tang. 2012. Thermal inactivation of Botrytis cinerea conidia in synthetic medium and strawberry puree. International Journal of Food Microbiology, 155: 269-72.

Wagih, E. E., H. Abdel Wahab, M. R. A. Shehata, M. M. Fahmy and M. A. Gaber. 2019. Molecular and pathological variability associated with transposable elements of Botrytis Cinerea isolates infecting grape and strawberry in Egypt. International Journal of Phytopathology, 8: 37-51.

Weiberg, A., M. Wang, F.-M. Lin, H. Zhao, Z. Zhang, I. Kaloshian, H.-D. Huang and H. Jin. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342: 118-23.

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics PCR Protocols. Elsevier. pp. 315-22.

Williamson, B., B. Tudzynski, P. Tudzynski and J. A. L. Van Kan. 2007. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 8: 561-80.

Full Text: PDF

DOI: 10.33687/phytopath.008.03.2945


  • There are currently no refbacks.

Copyright (c) 2020 Mahmoud Gaber, Elsayed Wagih, Mohamed Shehata, Magda Fahmy, Hala Abdel Wahab

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.