Effect of Azospirillum, Sinorhizobium, and Glomus on the growth and quality of Carica papaya L. in greenhouse

Juan Ramiro Palomino-Malpartida, Cayo García-Blásquez-Morote, Roberta Esquivel-Quispe, Jorge Luis Huamancusi-Morales, José Antonio Quispe-Tenorio, Susan Milagros Alarcón-Romaní, Teresa Anghela Rojas-Cordero, Francisco Espinoza

Abstract


Papaya (Carica papaya L.) is a seed-propagated crop characterized by slow germination and high plant mortality. The use of plant growth-promoting microorganisms offers an alternative approach to achieving rapid, uniform germination and reduced mortality. The present study aimed to evaluate the effects of individual and combined inoculations of Sinorhizobium meliloti, Azospirillum brasilense, and Glomus iranicum on the agronomic characteristics and quality indicators of greenhouse-grown papaya plants. A 2 × 2 × 2 factorial experiment was conducted with the following treatments: S. meliloti (T1), A. brasilense (T2), S. meliloti + A. brasilense (T3), G. iranicum (T4), S. meliloti + G. iranicum (T5), A. brasilense + G. iranicum (T6), S. meliloti + A. brasilense + G. iranicum (T7), and a Control (T0). The results demonstrated that inoculation with the combined treatment of S. meliloti + A. brasilense + G. iranicum (T7), as well as G. iranicum alone (T4) and S. meliloti + G. iranicum (T5), resulted in significantly higher root weight, aerial part weight, total fresh and dry weight, enhanced growth, and a higher Dickson Quality Index. In conclusion, treatments T7 and T5 produced higher-quality plants in a shorter time, with reduced mortality, making them suitable for field transplantation. These findings provide a foundation for sustainable agriculture practices.

Keywords


Papaya; Rhizobacteria; Mycorrhizal fungi; Interactions; Agronomic traits; Quality indicators

Full Text:

PDF

References


Abdelsattar, A.M., Elsayed, A., El-Esawi, M.A., Heikal, Y.M., 2023. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. Plant Physiology and Biochemistry 198, 107673.

Alarcón, S.A., Hernández, M., González, J.C., Enríquez, F., Velázquez, E.P., 2022. Producción y manejo del cultivo de papaya (Carica papaya L.). Revista Biológico Agropecuaria Tuxpan 10 (1), 164-169.

Arulbalachandran, D., Mullainathan, L., Latha, S., 2020. Food Security and Sustainable Agriculture. Sustainable Agriculture towards Food Security pp. 3-13.

AEDBLM., 2020. Asociación de Exportadores y Banco de Desarrollo de América Latina. Estudio de internacionalización del sector agroindustrial peruano. Estudio de Internacionalización del sector agroindustrial, en el marco de la Cooperación Técnica CAF – ADEX. On global market.

Bakhshish, K., Harpreet, K., Pushpinder, S.A., 2022. Effect of gibberellic acid (GA3) and plant growth promoting bacteria (Azotobacter and Azospirillum) on papaya (Carica papaya L. Cv. Red lady) under different growing conditions. International Journal of Recent Advances in Multidisciplinary Research 09(11), 8199-8202.

Barajas-Méndez, K.N., Toscano-Verduzco, F.A., Delgado-Salas, C.I., Chan-Cupul, W., Sánchez-Rangel, J.C., Buenrostro-Nava, M.T., Manzo-Sánchez, G., 2022. Emergence, growth and plant quality of two papaya (Carica papaya L.) genotypes inoculated with entomopathogenic fungi. Scientia Agropecuaria 13(4), 411-421.

Bartolini, S., Carrozza, G., Scalabrelli, G., Toffanin, A., 2017. Effectiveness of Azospirillum brasilense Sp245 on young plants of Vitis vinifera L. Open Life Sciences 12(1), 365-372.

Bashan, Y., De-Bashan, L.E., 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Advances in Agronomy 108, 77-136.

Bonilla, R.R., González, L.E., Pedraza, R.O., Estrada, G.A., Pardo, S., Mazo, D.C., Ramírez, M.M., 2021. Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. AGROSABIA. DOI: https://doi.org/10.21930/agrosavia.analisis.7405019

Cassán, F., Vanderleyden, J., Spaepen, S., 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation 33, 440-459.

Chako, E.K., Singh, R.N., 1966. Studies of the longevity of Papaya, Phalsa, Guava and Mango seeds. International Seed Testing Association 36(1), 147-158.

CKPP., 2008. Questions y Answers: Facts about peatland degradation in Southeast Asia in a global perspective. Central Kalimantan Peatland Project (CKPP). Wageningen, Wetlands Internation.

da Silva, J.A.S., Dos Santos, M.S.N., Oro, C.E.D., de Moura, D.B., da Silva, F.B., da Silva, P.N., Knies, A.E., Zabot, G.L., Tres, M.V., 2023. Interactive performance of wheat nitrogen fertilization and inoculation with growth-promoting bacteria. Biointerface Research in Applied Chemistry 13(4), 1-18.

Dalmasso, A., Masuelli, R., Salgado, O., 1994. Relación vástago-raíz durante el crecimiento en vivero de tres especies nativas del Monte Prosopis chilensis, Prosopis flexuosa y Bulnesia retama. Multequina 3, 35-43.

de Andrade, F.M., de Assis Pereira, T., Souza, T.P., Guimarães, P.H.S., Martins, A.D., Schwan, R.F., Pasqual, M., Dória, J., 2019. Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiological Research 223, 120-128.

de Matos, E.C.T., Rodrigues, L.A., De A. Souza, P., Da Silva, R.V., Faria Jr, R.T., 2018. Photoacoustic spectroscopy to analyze the soil fertility treated with biochar and micorriza. Quimica Nova 41(9), 989-998.

Di Benedetto, A., Tognetti, J., 2016. Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. Revista de investigaciones agropecuarias 42(3), 258-282.

Di Rienzo J.A., Casanoves F., Balzarini M.G., González L., Tablada M., Robledo Y.C., InfoStat Version 2008. Grupo InfoStat, FCA; Universidad Nacional de Córdoba: Córdoba, Argentina, 208: p. 336. Available on: https://www.infostat.com.ar/index.php?mod=page&id=37 [Accessed: 16 June 2024]

Dickson, A., Leaf, A., Hosner, J.F., 1960. Quality Appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle 36(1), 10-13.

Dutta, P., Kundu, S., Chatterjee, S., 2010. Effect of bio-fertilizers on homestead fruit production of papaya cv. Ranchi. Acta Horticulturae 851, 385-388.

Egamberdieva, D., Wirth, S.J., Shurigin, V.V., Hashem, A., Abd_Allah, E.F., 2017. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology 8, 1887.

El Kinany, S., Achbani, E., Faggroud, M., Ouahmane, L., El Hilali, R., Haggoud, A., Bouamri, R., 2019. Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv. Feggouss. Journal of the Saudi Society of Agricultural Sciences 18(4), 411-417.

FAO., 2024. Major Tropical Fruits Market Review Preliminary. Food and Agriculture Organization of the United Nations. Results 2023. Roma.

Gaiotto, A.H.P., Lima, S.F., Santos, E.S., Ferreira, L.L., Ferreira, E.P., Slaviero, G., 2023. Nicotinamide, Azospirillum brasilense, and a mixture of phytohormones as biostimulants in corn. Revista de Agricultura Neotropical 10(2), e7082-e7082.

Galeote-Cid, G., Cano-Ríos, P., Ramírez-Ibarra, J.A., Nava-Camberos, U., Reyes-Carrillo, J. L., Cervantes-Vázquez, M.G., 2022. Performance of Huacle chili (Capsicum annuum L.) with implementation of compost and Azospirillum sp. in greenhouse. Terra Latinoamericana 40.

Galindo, F.S., Teixeira Filho, M.C.M., Buzetti, S., Rodrigues, W.L., Santini, J. M.K., Alves, C.J., 2019. Nitrogen fertilisation efficiency and wheat grain yield affected by nitrogen doses and sources associated with Azospirillum brasilense. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 69(7), 606-617.

Gallegos-Cedillo, V.M., Diánez, F., Nájera, C., Santos, M., 2021. Plant agronomic features can predict quality and field performance: a bibliometric analysis. Agronomy 11(11), 2305.

García-Blásquez, C., Sato, M., 2019. Técnicas de aislamiento, identificación, selección de cepas de Rhizobium, Azospirillum y producción de inoculantes. Investigación 27(1), 175-195.

Gianinazzi, S., Gollotte, A., Binet, M.N., van Tuinen, D., Redecker, D., Wipf, D., 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8), 519-530.

Gureeva, M.V., Gureev, A.P., 2023. Molecular mechanisms determining the role of bacteria from the genus Azospirillum in plant adaptation to damaging environmental factors. International Journal of Molecular Sciences 24(11), 9122.

Hidalgo, J., Ramos, C., Huamán, J., Alaya, B., Medina, M., 2021. Coinoculación de Rhizophagus irregularis y Trichoderma viride en Carica papaya (Caricaceae) “papaya” en condiciones de invernadero. Arnaldoa 28(2), 349-364.

Krishnanayak, L., Kotiyal, A., Koubouris, G., 2024. Optimized seed germination and adaptation of plantlets to a new environment of papaya cv. ‘Red Baby’ using organic media and plant growth regulators. Vegetos 37(1), 355-362.

Li, X., Zhao R., R., Li, D., Wang, G., Bei, S., Ju, X., An, R., Li, L., Kuyper, T., Christie, P., Bender, F., Veen, C., Van der Heijden, M., Van der Putten, W., Zhang, F., Butterbach-Bahl, K., Zhang, J., 2023. Mycorrhiza-mediated recruitment of complete denitrifying Pseudomonas reduces N2O emissions from soil. Microbiome 11(1), 1-18.

Licea-Herrera, J.I., Quiroz-Velásquez, J.D.C., Hernández-Mendoza, J.L., 2020. Impacto de Azospirillum brasilense, una rizobacteria que estimula la producción del ácido indol-3-acético como el mecanismo de mejora del crecimiento de las plantas en los cultivos agrícolas. Revista Boliviana de Química 37(1), 34-39.

Lima, K.B., Martins, M.A., Freitas, M.S.M., Olivares, F.L., 2011. Arbuscular mycorrihizal fungi, diazotrophic bacteria and phosphate fertilization on papaya seedlings. Revista Brasileira de Fruticultura 33(3), 932-940.

Lipa, P., Janczarek, M., 2020. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 8, e8466.

Luciani, E., Palliotti, A., Tombesi, S., Gardi, T., Micheli, M., Berrios, J.G., Farinelli, D., 2019. Mitigation of multiple summer stresses on hazelnut (Corylus avellana L.): Effects of the new arbuscular mycorrhiza Glomus iranicum tenuihypharum sp nova. Scientia Horticulturae 257, 108659.

Martin, F.M., van der Heijden, M.G.A., 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytology 242, 1486-1506.

Mishra, B.B., Nayak, S.K., Pahari, A., 2021. Agriculturally Important Microorganisms: Mechanisms and Applications for Sustainable Agriculture. CRC Press. DOI: https://doi.org/10.1201/9781003245841

Mishra, U., Bahadur, V., Prasad, V.M., Verty, P., Kumar Singh, A., Mishra, S., Swaroop, N., 2017. Influence of GA3 and growing media on growth and seedling establishment of papaya (Carica papaya L.) cv. Pusa Nanha. International Journal of Current Microbiology and Applied Sciences 6(11), 415-422.

Moreira, H., Pereira, S.I., Vega, A., Castro, P.M., Marques, A.P., 2020. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. Journal of Environmental Management 257, 109982.

Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M., 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32(2), 429-448.

Naseer, I., Ahmad, M., Hussain, A., Jamil, M., 2020. Impact of yeast (Saccharomyces cerevisiae) on the seedlings growth of (Sorghum bicolor L.) and (Zea mays L.) irrigated initially by diluted natural seawater. Pakistan Journal of Agricultural Sciences 57(3), 901-909.

Oliveira Filho, F.S., De Medeiros, J.F., Tavares Gurgel, M., Gongalves, E., Oliveira, H., Lins Cassimiro, C.A, 2020. Arbuscular mycorrhizal fungi as mitigating agents of salt stress in Formosa papaya seedlings. Comunicata Scientiae 11, 1-13.

Oliveira, A.M.C., 1981. The H/D ratio in maritime pine (Pinus pinaster) stands. General Technical Report NC. 2, 881.

Palomino, J., Esquivel, R., Huamancusi, J., Alarcón, S., García-Blásquez, C., 2022. Azospirillum brasilense y ácido indol-3-butírico en el enraizamiento de tallos de palto (Persea americana Mill.). Bioagro 35(1), 69-74.

Parra, S.P., Maciel, N., 2018. Efectos de la siembra y el trasplante a recipiente cónico en el crecimiento de Pithecellobium dulce y Platymiscium diadelphum en vivero. Bioagro 30(2), 125-134.

Poorter, H., Sack, L., 2012. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Frontiers in Plant Science 3, 259.

Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., Jat, L.K., 2019. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. PGPR Amelioration in Sustainable Agriculture 129-157. DOI: https://doi.org/10.1016/b978-0-12-815879-1.00007-0

Quiñones-Aguilar, E., Rincón-Enríquez, G., López-Pérez, L., 2019. Hongos micorrizícos arbusculares y vermicomposta en el crecimiento de papaya (Carica papaya L) en invernadero. Agro Productividad 12(3), 47-52.

Ruiz-Coutiño, P., Adriano-Anaya, L., Salvador-Figueroa, M., Gálvez-López, D., Rosas-Quijano, R., Vázquez-Ovando, A., 2019. Organic management of ‘maradol’ papaya (Carica papaya L.) crops: Effects on the sensorial and physicochemical characteristics of fruits. Agriculture (Switzerland) 9(11), 234.

Samri, S.E.D., Aberkani, K., Said, M., Haboubi, K., Ghazal, H., 2021. Effects of inoculation with mycorrhizae and the benefits of bacteria on physicochemical and microbiological properties of soil, growth, productivity and quality of table grapes grown under Mediterranean climate conditions. Journal of Plant Protection Research 61(4), 337-346.

Sangabriel-Conde, W., Trejo-Aguilar, D., Soto-Estrada, A., Alvarado-Castillo, G., 2017. Diversidad y funcionalidad de hongos micorrízico-arbusculares en plantaciones de Carica papaya L., con diferente manejo agronómico. Journal of Controlled Release 10, 90-94.

Sankar, K., Sundaramoorthy, P., Nagarajan, M., Lawrence Xavier, R., 2017. Role of organic amendments in sustainable agriculture. Sustainable Agriculture towards Food Security 111124. DOI: https://doi.org/10.1007/978-981-10-6647-4_7

Setiawati, M.R., Afrilandha, N., Hindersah, R., Suryatmana, P., Fitriatin, B.N., Kamaluddin, N.N., 2023. The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato. Sains Tanah 20(1), 66-77.

Thangavel, P., Anjum, N.A., Muthukumar, T., Sridevi, G., Vasudhevan, P., Maruthupandian, A., 2022. Arbuscular mycorrhizae: natural modulators of plant-nutrient relation and growth in stressful environments. Archives of Microbiology 204(5).

Zhang, L., Zuluaga, M.Y.A., Pii, Y., Barone, A., Amaducci, S., Miras-Moreno, B., Martinelli, E., Bellotti, G., Trevisan, M., Puglisi, E., Puglisi, E., Lucini, L., 2023. A Pseudomonas plant growth promoting Rhizobacterium and arbuscular mycorrhiza differentially modulate the growth, photosynthetic performance, nutrients allocation, and stress response mechanisms triggered by a mild Zinc and Cadmium stress in tomato. Plant Science 337, 111873.




DOI: https://doi.org/10.33804/pp.009.01.5434

Refbacks

  • There are currently no refbacks.