Biocidal function of Trichoderma-derived secondary metabolites against Fusarium wilt of pea

Abuzar Hasnain, Muhammad Atiq, Nasir Ahmed Rajput, Ahmad Nawaz, Waqas Ahmad, Mouzzama Akhtar, Zoha Adil, Aisha Waseem, Aniqa Ijaz, Asad Ullah

Abstract


The current research investigates the potential of secondary metabolites extracted from Trichoderma species for managing Fusarium wilt in pea plants. Crude extracts of secondary metabolites from T. viride and T. harzianum were obtained using ethyl acetate and methanol through solvent extraction methods and evaluated for their antifungal activity against Fusarium oxysporum f.sp. pisi under various experimental conditions. In vitro assays were performed using the poisoned food technique on potato dextrose agar (PDA) medium, employing Completely Randomized Design (CRD) with three concentrations of secondary metabolites (250 ppm, 350 ppm, and 500 ppm). Greenhouse experiments were also conducted in a CRD setup, where pea plants were inoculated with a spore suspension (1×10⁶ spores/ml) of the pathogen and treated with different concentrations of metabolites through soil drenching. For field trials, a Randomized Complete Block Design was utilized to evaluate the most effective concentration (500 ppm) of metabolites, applied via hand sprayer and soil drenching. Results showed that the combination of T. viride and T. harzianum metabolites significantly reduced mycelial growth (10.11 mm) under laboratory conditions and decreased disease incidence to 27.08% in greenhouse trials and 28.15% in field trials. These findings highlight the potential of Trichoderma-derived secondary metabolites as a sustainable approach for managing Fusarium wilt in pea plants, offering promising prospects for integrated disease management strategies.

Keywords


Pisum sativum L., Fusarium oxysporum f.sp. pisi, solvent extraction method, T. harzianum, T. viridi, Crude metabolite extract

Full Text:

PDF

References


Aberkane, A., Cuenca-Estrella, M., Gomez-Lopez, A., Petrikkou, E., Mellado, E., Monzon, A., Rodriguez-Tudela, J.L., 2002. Comparative evaluation of two different methods of inoculum preparation for antifungal susceptibility testing of filamentous fungi. Journal of Antimicrobial Chemotherapy 50(5), 719-722.

Ahmad, M.A., Iqbal, S.M., Ayub, N., Ahmad, Y., Akram, A., 2010. Identification of resistant sources in chickpea against Fusarium wilt. Pakistan Journal of Botany 42(1), 417-426.

Ali, H.A., Ali, A.J., Lahuf, A.A., Al-Taey, D.K., 2024. Characterization and report of Alternaria alternata causing leaf spot disease in plum trees in Karbala, Iraq. Pakistan Journal of Phytopathology 36(1), 11-17.

Atiq, M., Nawaz, A., Younas, M., Nasir, M., Rashid, A., Ehetisham-ul-Haq, M., 2016. Characterization of environmental conditions conducive to powdery mildew disease of pea. Advances in Environmental Biology 10(5), 243-250.

Azeem, W., Mukhtar, T., Hamid, T., 2021. Evaluation of Trichoderma harzianum and Azadirachta indica in the management of Meloidogyne incognita in tomato. Pakistan Journal of Zoology 53(1), 119-125.

Bello, O., Ayanda, O., Aworunse,O., Olukanmi, B., Soladoye, M., Esan, E., Obembe, O., 2018. Solanecio biafrae: an underutilized nutraceutically-important African indigenous vegetable. Pharmaceutical Reviews 12(23), 128-132.

Bhardwaj, A., Sharma, D., Jadon, N., Agrawal, P.K., 2015. Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus roxburghii. Archives of Clinical Microbiology 6(3), 1-9.

Buddhika, U., Abeysinghe, S., 2021.Secondary metabolites from microbes for plant disease management. Emerging Trends in Plant Pathology. Springer 331-342.

Chaudhary, N., Singh, C., Pathak, P., Rathi, A., Vyas. D., 2021. Evaluation of the impact of pathogenic fungi on the growth of Pisum sativum L.-A review article. International Journal of Agricultural Technology 17(2), 443-64.

Dai, J., Mumper, R.J., 2010. Plant phenolics extraction analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313-7352.

Divekar, P.A., Narayana, S., Divekar, B.A., Kumar, R., Gadratagi, B.G., Ray, A., Singh, A.K., Rani, V., Singh, V., Singh, A.K., Kumar, A., 2022. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences 23(5), 2690.

El-Sharkawy, H.H., Abbas, M.S.; Soliman, A.S., Ibrahim S.A., El-Nady, I.A., 2021. Synergistic effect of growth-promoting microorganisms on bio-control of Fusarium oxysporum f. sp. pisi growth, yield, physiological and anatomical characteristics of pea plants. Pesticide Biochemistry and Physiology 178(6), 104939.

Gonzalez, M.F., Magdama, F., Galarza, L., Sosa, D., Romero, C., 2020. Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Communicative & Integrative Biology 13(1), 160-169.

Gupta, S., Gupta, R., 2019. Fusarium wilt of pea-A mini review. Research in Plant Diseases 34(1), 1-9.

Harman, G.E., 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease 84, 377-393.

Husnain, S.K., Hussain, S.H., Atiq, M., Rajput, N.A., Abbas, W., Mohsin, M., 2019. Screening of peas (Pisum sativum) varieties/lines against Fusarium wilt (Fusarium oxysporum f. sp. pisi) and in vitro evaluation of fungicides against mycelial growth of pathogen. Pakistan Journal of Phytopathology 31(1), 89-96.

Iqbal, U., Mukhtar, T., 2020. Evaluation of biocontrol potential of seven indigenous Trichoderma species against charcoal rot causing fungus, Macrophomina phaseolina. Gesunde Pflanzen 72(2), 195-202.

Jacobsen, B.J., Zidack, N.K., Larson, B.J., 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94(11), 1272-1275.

Jagtap, P.P., Shingane,U.S., Kulkarni, K.P., 2012. Economics of chilli production in India. African Journal of Basic and Applied Science 4(5), 161-164.

Jimenez-Diaz, R.M., Alcala-Jimenez, A., Hervás, A., Trapero-Casas, J.L., 1993. Pathogenic variability and host resistance in the Fusarium oxysporum f. sp. ciceris-Cicer arietinum pathosystem. Hodowla Roślin Aklimatyzacja i Nasiennictwo 37(3), 87-94.

Khulbe, A., Sharma, K., 2020. Important Diseases of Field Pea (Pisum sativum var. arvense) and Their Management. Diseases of Field Crops: Diagnosis and Management, New York: Apple Acad. Press.

Kumar, M., Vipul, K., Meenakshi, R., Seweta. S., 2019. Effect of volatile and non-volatile compounds of Trichoderma spp. against Fusarium isolates causing chickpea wilt in Punjab. Plant Archives 19(1), 159-162.

Maheshwary, N., Naik, B.G., Chittaragi, A., Naik, M.K., Satish, K., Nandish, M., Manu, T., Patil, B., 2022. Morpho-molecular characterization, diversity analysis and antagonistic activity of Trichoderma isolates against predominant soil borne pathogens. Indian Phytopathology 75(4), 1009-1020.

Maurya, S., Ntakirutimana, R., Debnath, B., Rana, M., Kaushik, D., Srivastava, S., 2024. Trichoderma and their secondary metabolites – a potential approach in plant disease management. Biopesticides International 20(1), 21-33.

Moutassem, D., Belabid, L., Bellik, Y., 2020. Efficiency of secondary metabolites produced by Trichoderma spp. in the biological control of Fusarium wilt in chickpea. Journal of Crop Protection 9(2), 217-231.

Mukhtar, T., 2018. Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pakistan Journal of Zoology 50(4), 1589-1592.

Mukhtar, T., Hussain, M.A., Kayani, M.Z., 2013. Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathologia Mediterranea 52 (1), 66-76.

Mukhtar, T., Tariq-Khan, M., Aslam, M.N., 2021. Bioefficacy of Trichoderma Species against Javanese root-knot nematode, Meloidogyne javanica in green gram. Gesunde Pflanzen 73(3), 265-272.

Pancholi, L.K., Gupta, P.K., Gharde,Y.; Kharte, S., 2022. In vitro assessment of fungicides against Fusarium oxysporum f. sp. pisi causing Fusarium wilt of pea. Annals of Plant Sciences 30(1), 18-21.

Petrișor, C., Paica, A., Constantinescu, F., 2017. Effect of secondary metabolites produced by different Trichoderma spp. isolates against Fusarium oxysporum f. sp. radicis-lycopersici and Fusarium solani. Scientific papers series B Horticulture 61, 407-411.

Rehman, M.A., Abbas, A., Iqbal, Z., Ali, M., Ahmad, S., Asim, M., Nadeem, M., 2024. Efficacy of fungicides against Penicillium italicum causing citrus blue mold. Pakistan Journal of Phytopathology 36(1), 123-139.

Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y., Chen, J., 2016. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control 94, 37-46.

Segaran, G., Sathiavelu, M., 2019. Fungal endophytes A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agriculture Biotechnology 21(4), 101284.

Sharma, A., Diwevidi, V.D., Singh, S., Pawar, K.K., Jerman, M., Singh, L.B., Singh, S., Srivastawav, D., 2013. Biological control and its important in agriculture. International Journal of Biotechnology and Bioengineering Research 4(3), 175-180.

Singh, J., Mishra, S., Singh, V., 2024. Fungal metabolites as novel plant pathogen antagonists. In Nanohybrid Fungicides Elsevier. pp. 209-237.

Sirwaiya, S., Kushwah, S., Bain, R.P., Mandale, P., 2018. Study of combined effect of sowing dates and varieties on growth attributes in Garden Pea (Pisum sativum L.). The Pharma Innovation Journal 7(5), 709.

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F., Sharma, A., 2020. Trichoderma: The secrets of a multitalented biocontrol agent Plants. 9(6)762-769.

Sun, S., Lui, Q., Han, L., Ma, Q., He, S., Li, X., Zhang, H., Zhang, J., Liu, X., Wang, L., 2018. Identification and characterization of Fusarium proliferatum, a new species of fungi that cause fungal keratitis. Scientific Reports 8(1), 4859.

Tariq, M., Khan, A., Asif, M., Khan, F., Ansari, T., Shariq, M., Siddiqui, M.A., 2020. Biological control a sustainable and practical approach for plant disease management. Acta Agriculturae Scandinavica, Section B-Soil and Plant Sciences 70(6), 507-524.

Yaseen, I., Mukhtar, T., Kim, H.-T., Arshad, B. 2024. Interactive effects of Meloidogyne incognita and Fusarium oxysporum f.sp. vasinfectum on okra cultivars. Bragantia 83, e20230266.

Yedidia, I., Benhamou, N., Kapulnik, Y., Chet, I., 2000.Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry 38(11), 863-873.

Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., Chet, I., 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied Environmental Microbiology 69(12), 7343-7353.

Zeeshan, M., Mukhtar, T., Haq, M.I., Asad, M.J., 2023. Incidence, characterization and pathogenic variability of Fusarium oxysporum in the Punjab province of Pakistan. International Journal of Phytopathology 12(1), 1-11.

Zhao, D.L., Zhang, X-F., Huang, R-H., Wang, D., Wang, X-Q., Li, Y-Q., Zheng, C-J., Zhang, P., Zhang, C.S., 2002. Antifungal nafuredin and epithiodiketopiperazine derivatives from the mangrove-derived fungus Trichoderma harzianum D13. Frontiers in Microbiology 11, 1495.




DOI: https://doi.org/10.33804/pp.008.03.5310

Refbacks

  • There are currently no refbacks.