Improved physiological responses and stress tolerance in cotton against Fusarium wilt with Trichoderma harzianum treatment

Tahir Mahmood, Muhammad Adnan, Anam Moosa, Muhammad Mahmood, Atta ur Rehman Khan, Muhammad Riaz, Shurmeen Qammar, Abdul Qayyum, Ghulam Muhammad Qammar, Muhammad Shoaib Shoukit, Muhammad Saqib Bilal, Muhammad Luqman, Muzamil Afzal

Abstract


Cotton is a vital cash crop in the agricultural economy. Many abiotic stresses and pathogenic diseases reduce cotton yield, with cotton wilt being a major threat caused by Fusarium oxysporum f.sp. vasinfectum (FOV). In the present study, the antagonistic potential of Trichoderma harzianum, along with its extracted volatile and non-volatile compounds, was evaluated against FOV. In a dual culture assay, T. harzianum showed 71.4% inhibition of FOV. The volatile compounds extracted from T. harzianum showed 54.9% inhibition of FOV, while the non-volatile compounds reduced the growth of F. oxysporum f.sp. vasinfectum by 64.21%. The evaluation of vegetative traits of cotton plants indicated increased biomass when treated with T. harzianum. The activity of antioxidant defense enzymes Catalase activity (CAT), Superoxide dismutase activity (SOD), and Peroxidase activity (POX) was highest in cotton plants treated with both T. harzianum and F. oxysporum f.sp. vasinfectum, indicating an activation of the plant defense mechanisms in response to these treatments. Protein content, Malondialdehyde Content (MDA), proline content, electrolyte leakage, and H2O2 content, which are stress markers, were at their maximum under F. oxysporum f.sp. vasinfectum stress. Physiological features, including stomatal conductance, photosynthesis rate, Soil Plant Analysis Development (SPAD) chlorophyll value, and relative water content, were highest in plants treated with T. harzianum, as T. harzianum improves and boosts plant growth. Hence, T. harzianum is an effective biological control agent against FOV.


Keywords


Cotton; Fusarium Wilt; Trichoderma harzianum; Stress Tolerance; Physiological Responses

Full Text:

PDF

References


Amini, J., Sidovich, D., 2010. The effects of fungicides on Fusarium oxysporum f.sp. lycopersici associated with Fusarium wilt of tomato. Journal of Plant Protection Research 50(2), 172-174.

Asif, M., Haider, M.S., Akhter, A., 2023. Impact of Biochar on Fusarium wilt of cotton and the dynamics of soil microbial community. Sustainability 15(17), 12936.

Asif, R., Muzammil, S., Yasmin, R., Ahmad, H., Ambreen, A., 2023. Isolation and characterization of Fusarium oxysporum f.sp. Vasinfectum causative agent of cotton wilt disease in Punjab, Pakistan. Pakistan Journal of Phytopathology 35(1), 103-110.

Azeem, W., Mukhtar, T., Hamid, T., 2021. Evaluation of Trichoderma harzianum and Azadirachta indica in the management of Meloidogyne incognita in Tomato. Pakistan Journal of Zoology 53(1), 119-125.

Bahuguna, R.N., Joshi, R., Shukla, A., Pandey, M., Kumar, J., 2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry 57, 159-167.

Bhagat, S., 2008. Biocontrol potential of Trichoderma spp. from Andaman and Nicobar Islands (Doctoral dissertation, PhD thesis, BCKV, West Bengal, India).

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2), 248-254.

Brotman, Y., Landau, U., Cuadros-Inostroza, Á., Takayuki, T., Fernie, A.R., Chet, I., Willmitzer, L., 2013. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLOS Pathogens 9(3), e1003221.

da Silva, J.A.T., Yücel, M., 2008. Revealing response of plants to biotic and abiotic stresses with microarray technology. Genes Genomes Genomics 2(1), 14-48.

Dastur, R.H., Arora, R.D., Sawhney, K., Sikka, S.M., 2015. Resource productivity and resource use efficiency in sugarcane production. Journal of Agriculture Research and Technology 40(1), 176.

Dennis, C., Webster, J., 1971. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society 57(1), 25-39.

Dennis, C., Webster, J., 1971. Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1), 41-8.

Díaz-Vivancos, P., Clemente-Moreno, M.J., Rubio, M., Olmos, E., García, J.A., Martínez-Gómez, P., Hernández, J.A., 2008. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany 59(8), 2147-2160.

Dikilitas, M., Karakas, S., Hashem, A., Abd Allah, E.F., Ahmad, P., 2016. Oxidative stress and plant responses to pathogens under drought conditions. Water Stress and Crop Plants: A Sustainable Approach 1, 102-123.

Dionisio-Sese, M.L., Tobita, S., 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science 135(1), 1-9.

Dubey, S.C., 2003. Integrated management of web blight of urd/mung bean by bio-seed treatment. Indian Phytopathology 56(1), 34-38.

Dubey, S.C., Patel, B., 2001. Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of urd and mung bean. Indian Phytopathology 28(1), 15-17.

Dubey, S.C., Suresh, M., Singh, B., 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control 40(1), 118-127.

Fatima, R., Mahmood, T., Moosa, A., Aslam, M.N., Shakeel, M.T., Maqsood, A., Shafiq, M.U., Ahmad, T., Moustafa, M., Al‐Shehri, M., 2023. Bacillus thuringiensis CHGP12 uses a multifaceted approach for the suppression of Fusarium oxysporum f. sp. ciceris and to enhance the biomass of chickpea plants. Pest Management Science 79(1), 336-348.

Geng, Z., Zhu, W., Su, H., Zhao, Y., Zhang, K.Q., Yang, J., 2014. Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Biotechnology Advances 32(2), 390-402.

Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59(2), 309-314.

Gratão, P.L., Monteiro, C.C., Carvalho, R.F., Tezotto, T., Piotto, F.A., Peres, L.E., Azevedo, R.A., 2012. Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry 56, 79-96.

Guidi, L., Tonini, M., Soldatini, G.F., 2000. Effects of high light and ozone fumigation on photosynthesis in Phaseolus vulgaris. Plant Physiology and Biochemistry 38(9) 717-725.

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2(1), 43-56.

Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A., 2012. Role of proline under changing environments: a review. Plant Signaling and Behavior 7(11), 1456-1466.

Iqbal, U., Mukhtar, T., 2020. Evaluation of biocontrol potential of seven indigenous Trichoderma species against charcoal rot causing fungus, Macrophomina phaseolina. Gesunde Pflanzen 72(2), 195-202.

Irfan, M., Ahmad, A. Hayat, S., 2014. Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences 21(2), 125-131.

Jeevidha, M., Sible, G.V., Cyriac, A., Nair, A., Radhakrishnan, N.V., Johnson, J.M., Anuradha, S.S.T.T., 2023. Assessment of the biocontrol attributes of native Trichoderma isolates and their field evaluation against Fusarium wilt of vegetable cowpea. The Pharma Innovation Journal 12(8), 32-40.

Karaş, E., 2022. Sustainable and effective management strategies in cotton cultivation. IntechOpen 104104.

Kaya, C., Higgs, D., Ince, F., Amador, B.M., Cakir, A., Sakar, E., 2003. Ameliorative effects of potassium phosphate on salt‐stressed pepper and cucumber. Journal of Plant Nutrition 26(4), 807-820.

Kumar, D., Dubey, S.C., 2001. Management of collar rot of pea by the integration of biological and chemical methods. Indian phytopathology 54(1), 62-66.

Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., Srivastava, R.C., 2012. Isolation and characterization of Trichoderma spp. for antagonistic activity against root rot and foliar pathogens. Indian Journal of Microbiology 52, 137-144.

Kumar, S., Pandey, S., Rathore, U.S., Kumar, K., 2020. Multi-trait Trichoderma for improving plant health of grain legumes. In Microbial Mitigation of Stress Response of Food Legumes 85-102.

Leslie, J.F., Summerell, B.A., 2006. Fusarium laboratory workshops- A recent history. Mycotoxin Research 22(2), 73-74.

Liu, N., Zhang, X., Sun, Y., Wang, P., Li, X., Pei, Y., Hou, Y., 2017. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton. Scientific Reports 7(1), 39840.

Maalik, S., Moosa, A., Zulfiqar, F., Aslam, M.N., Mahmood, T., Siddique, K.H., 2023. Endophytic Bacillus atrophaeus CHGP13 and salicylic acid inhibit blue mold of lemon by regulating defense enzymes. Frontiers in Microbiology 14, 1184297.

Mahmood, T., Fatima, R., Maalik, S., 2022. Lipopeptides: Powerful antifungal weapons produced by Bacillus specie. Plant Bulletin 1(1), 51-64.

Mahmood, T., Moosa, A., Ahmad, W., Malik, J., Shafiq, M.U., Yousaf, M., Abbas, G., 2023. Lipopeptides: Powerful antifungal compounds produced by Bacillus species: A Review. Plant Protection 7(3), 605-614.

Majeed, S., Rana, I.A., Mubarik, M.S., Atif, R.M., Yang, S.H., Chung, G., Azhar, M.T., 2021. Heat stress in cotton: a review on predicted and unpredicted growth-yield anomalies and mitigating breeding strategies. Agronomy 11(9), 1825.

Malik, J., Moosa, A., Zulfiqar, F., Aslam, M.N., Albalawi, M.A., Almowallad, S., Mahmood, T., Alasmari, A., Yong, J.W.H., 2024. Biocontrol potential of lipopeptides produced by the novel Bacillus altitudinis strain TM22A against postharvest Alternaria rot of tomato. Food Science and Technology 191, 115541.

Maqsood, A., Wu, H., Kamran, M., Altaf, H., Mustafa, A., Ahmar, S., Chen, J.T., 2020. Variations in growth, physiology, and antioxidative defense responses of two tomato (Solanum lycopersicum L.) cultivars after co-infection of Fusarium oxysporum and Meloidogyne incognita. Agronomy 10(2), 159.

Morton, D.J., Stroube, W.H., 1955. Antagonistic and stimulatory effects of soil microorganisms upon Sclerotium rolfsii. Phytopathology 45(8), 417-420.

Mukhtar, T., 2018. Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pakistan Journal of Zoology 50(4), 1589-1592.

Mukhtar, T., Hussain M.A., Kayani, M.Z., 2013. Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathologia Mediterranea 52 (1), 66-76.

Mukhtar, T., Tariq-Khan, M., Aslam, M.N., 2021. Bioefficacy of Trichoderma Species against Javanese Root-Knot Nematode, Meloidogyne javanica in Green Gram. Gesunde Pflanzen 73(3), 265-272.

Musheer, N., Jamil, A., Choudhary, A., 2023. Solo and combined applications of fungicides and bio-agents to reduce severity of Fusarium oxysporum and induce antioxidant metabolites in Ocimum tenuiflorum L. Journal of Plant Pathology 105(1), 237-251.

Naseby, D.C., Pascual, J.A., Lynch, J.M., 2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology 88(1), 161-169.

Ozyigit, I.I., Dogan, I., Kaya, Y., Bajrovic, K., Gozukirmizi, N., 2022. Cotton biotechnology: An efficient gene transfer protocol via Agrobacterium tumefaciens for a greater transgenic recovery. Journal of Natural Fibers 19(15), 11582-11596.

Padmodaya, B., Reddy, H.R., 1996. Screening of Trichoderma spp. against Fusarium oxysporum f.sp. lycopersici causing wilt in tomato. Indian Journal of Mycology and Plant Pathology 26(3), 266-270.

Patel, N., Sandipan, P.B., Saini, N., Patel, P.S., Patel, R.K., 2023. In vitro evaluation of different bioagents against Corynespora cassiicola causing target leaf spot disease of cotton under South Gujarat of India. The Pharma Innovation Journal 12(7), 218-221.

Poddar, R.K., Singh, D.V., Dubey, S.C., 2004. Integrated application of Trichoderma harzianum mutants and carbendazim to manage chickpea wilt (Fusarium oxysporum f.sp. ciceris). Indian Journal of Agricultural Sciences 74(6), 346-348.

Rubio, N., Coupienne, I., Di Valentin, E., Heirman, I., Grooten, J., Piette, J., Agostinis, P., 2012. Spatiotemporal autophagic degradation of oxidatively damaged organelles after photodynamic stress is amplified by mitochondrial reactive oxygen species. Autophagy 8(9), 1312-1324.

Shukla, N., Awasthi, R.P., Rawat, L., Kumar, J., 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry 54, 78-88.

Sofy, M., Mohamed, H., Dawood, M., Abu-Elsaoud, A., Soliman, M., 2022. Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Archives of Agronomy and Soil Science 68(14), 2005-2026.

Steel, D., 2001. Bayesian statistics in radiocarbon calibration. Philosophy of Science 68(S3), S153-S164.

Sutherland, R., 2013. The effect of cold stress on resistance in Cavendish bananas to Fusarium wilt (Doctoral dissertation, University of Pretoria (South Africa).

Tariq, M., Afzal, M.N., Muhammad, D., Ahmad, S., Shahzad, A.N., Kiran, A., Wakeel, A., 2018. Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crops Research 229, 37-43.

Thomas, R.L., Jen, J.J., Morr, C.V., 1982. Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development. Journal of Food Science 47(1), 158-161.

Velikova, V., Yordanov, I. Edreva, A.J.P.S., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151(1), 59-66.

Yaseen, I., Mukhtar, T., Kim, H.-T., Arshad, B., 2024. Interactive effects of Meloidogyne incognita and Fusarium oxysporum f.sp. vasinfectum on okra cultivars. Bragantia 83, e20230266. https://doi.org/10.1590/1678-4499.20230266

Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y., Chet, I., 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and environmental microbiology 69(12), 7343-7353.

Zeeshan, M., Mukhtar, T., Haq, M.I., Asad, M.J., 2023. Incidence, characterization and pathogenic variability of Fusarium oxysporum in the Punjab province of Pakistan. International Journal of Phytopathology 12(1), 1-11.

Zulfiqar, F., Ashraf, M., 2023. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation 42(8), 4629-4651.




DOI: https://doi.org/10.33804/pp.008.02.4894

Refbacks

  • There are currently no refbacks.