Breeding Wheat for Rust Resistance: Conventional and Modern Approaches

Amir Afzal, Sairah Syed, Muhammad Saeed, Rabia Sultan, Misbah Kanwal, Moazan Shahid, Muhammad Zahid, Basharat Mahmood


Three rusts are destructive, diminishing produce and nutritious value significantly, affect food availability and consequently food security through reductions in yield. In agricultural research institutes with mandate of wheat improvement, incorporating genes resistant against rust is matter of routine. The dilemma of rusts in wheat has been addressed the most, leading to discovery of principles of plant breeding for resistance e.g. gene disease genes inherit following Mendelian genetics, concept of genetic diversity and concept of gene for gene theory. Two strategies of breeding wheat for disease resistance are being followed. 1- Conventional and 2- Advanced. Among conventional approaches selection and hybridization are well known. However rust resistance has been found short lived and may also be durable in certain cases. Durability of disease resistance is desired and has been explored widely. Durability of resistance is generally attained through incorporation of genes effective at adult plant stage and combination of quantitative genes. Application of biotechnology to improve productivity of rust resistance breeding is the usage of molecular markers in pyramiding genes and substantiates the existence of genes in, and confirming released cultivars are pure. This involves molecular markers that are precise and pertinent across extensive ranges of breeders’ germplasm. This review article encompasses all features of wheat development through application of different techniques of wheat improvement. However, despite development of novel approaches that has accelerated wheat breeding, breeding in pathogen leading to producing more virulent strains. Consequently, wheat breeding is a continuous process.


Wheat rusts; Stripe Rust; Leaf Rust; Stem Rust; Breeding; Disease Resistance

Full Text:



Afzal, A., Ali, S.R., Ijaz, M., Saeed, M., 2021. Combating Ug99-Current Scenario. International Journal of Phytopathology 10, 57-70.

Afzal, A., Ijaz, M., Shah, S.R.A., 2020. Determination of suitable growth stage for application of fungicide against stripe rust in wheat. Pakistan Journal of Agricultural Research 33, 714-719.

Afzal, A., Riaz, A., Ashraf, S., Iqbal, J., Ijaz, M., Naz, F., Shah, S.K.N., 2022. Identification of durable resistance against stripe rust. International Journal of Phytopathology 11, 97-113.

Afzal, A., Riaz, A., Mirza, J.I., Shah, K.N., 2015. Status of wheat breeding at global level for combating Ug99–A Review. Pakistan Journal of Phytopathology 27, 211-218.

Afzal, S.N., Haque, M.I., Ahmedani, M.S., Rauf, A., Munir, M., Firdous, S.S., Rattu, A.R., Ahmad, I., 2008. Impact of stripe rust on kernel weight of wheat varieties sown in rainfed areas of Pakistan. Pakistan Journal of Botany 40, 923-929.

Aziz, M.A., 1966. Cereals and Pulses, Resume of Fifty Years Research Work at Punjab Agricultural College and Research Institute, Lyallpur. Department of Agriculture, West Pakistan.

Badebo, A., Stubbs, R.W., van Ginkel, M., Gebeyehu, G., 1990. Identification of resistance genes to Puccinia striiformis in seedlings of Ethiopian and CIMMYT bread wheat varieties and lines. Netherlands Journal of Plant Pathology 96, 199-210.

Bansal, M., Kaur, S., Dhaliwal, H.S., Bains, N.S., Bariana, H.S., Chhuneja, P., Bansal, U.K., 2017. Mapping of Aegilops umbellulata‐derived leaf rust and stripe rust resistance loci in wheat. Plant Pathology 66, 38-44.

Begum, S., Iqbal, M., Ahmed, I., Fayyaz, M., Shahzad, A., Ali, G.M., 2014. Allelic variation at loci controlling stripe rust resistance in spring wheat. Journal of Genetics 93, 579-586.

Beukert, U., Thorwarth, P., Zhao, Y., Longin, C.F.H., Serfling, A., Ordon, F., Reif, J.C., 2020. Comparing the potential of marker-assisted selection and genomic prediction for improving rust resistance in hybrid wheat. Frontiers of Plant Science 11, 594113.

Biffen, R.H., 1905. Mendel's laws of inheritance and wheat breeding. The Journal of Agricultural Science 1, 4-48.

Borlaug, N.E., 1958. The impact of agricultural research on Mexican wheat production. Transactions of the New York Academy of Sciences 20, 278-295.

Boyd, L.A., 2005. Can Robigus defeat an old enemy?–Yellow rust of wheat. The Journal of Agricultural Science 143, 233-243.

Brandt, K.M., Chen, X., Tabima, J.F., See, D.R., Vining, K.J., Zemetra, R.S., 2021. QTL analysis of adult plant resistance to stripe rust in a winter wheat recombinant inbred population. Plants 10, 572.

Brennan, J.P., Murray, G.M., 1988. Australian wheat diseases-assessing their economic importance. Agricultural Science 1, 26-35.

Carefoot, G.L., Sprott, E.R., 1967. Famine on the wind: man's battle against plant disease. Longmans Canada.

Channa, A.W., Bux, H., Sial, M.A., Jatoi, G.H., Kumar, R., 2021. Virulence phenotyping of leaf rust (Puccinia triticina) isolates from southern Pakistan. International Journal of Phytopathology 10, 101-123.

Channa, A.W., Bux, H., Jatoi, G.H., Sial, M.A., Shah, S.M., Figari, I.M., Koondhar, N., 2022. Evaluation of seedling resistance and marker assisted selection for leaf rust (Puccinia triticina) resistance in Pakistani wheat landraces, cultivars and advanced Lines. International Journal of Phytopathology 11, 155-169.

Chukwu, S.C., Rafii, M.Y., Ramlee, S.I., Ismail, S.I., Oladosu, Y., Okporie, E., Onyishi, G., Utobo, E., Ekwu, L., Swaray, S., 2019. Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnology & Biotechnological Equipment 33, 440-455.

Dimmock, J.P.R.E., Gooding, M.J., 2002. The influence of foliar diseases, and their control by fungicides, on the protein concentration in wheat grain: a review. The Journal of Agricultural Science 138, 349-366.

Eckstein, P., Rossnagel, B., Scoles, G., 2008. DArTs without the DArT board: the application of individual DArT markers to marker-assisted selection, The 8th International Oat Conference, June 28th-July 2nd.

Ellis, J.G., Lagudah, E.S., Spielmeyer, W., Dodds, P.N., 2014. The past, present and future of breeding rust resistant wheat. Frontier Plant Science 5, 1-13.

El-Orabey, W.M., Mabrouk, O.I., Gad, M.A., Esmail, S.M., 2020. Inheritance and detection of leaf rust resistance genes in some Egyptian wheat cultivars. International Journal of Genetics and Genomics 8, 1-10.

El-Orabey, W.M., Mabrouk, O.I., Gad, M.A., Esmail, S.M., 2020. Inheritance and detection of leaf rust resistance genes in some Egyptian wheat cultivars. International Journal of Genetics and Genomics 8, 1-10.

Farrer, W., 1898. The making and improvements of wheats for Australian conditions. Agricultural Gazette of New South Wales 9, 131–168.

Fayyaz, M., Shahzad, A., Ali, G.M., Rattu, A.R., Muhammad, F., 2017. Identification of stripe rust (Puccinia striiformis) resistant genes among Pakistani spring wheat by using molecular markers. International Journal of Bioscienses 11, 320-334.

Flor, H.H., 1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32, 653-669.

Flor, H.H., 1956. Complementary genetic system in flax of recombination values in heredity. Advance Genetics 8, 29-54.

Francia, E., Tacconi, G., Crosatti, C., Barabaschi, D., Bulgarelli, D., Dall’Aglio, E., Valè, G., 2005. Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture 82, 317-342.

Gessese, M.K., 2019. Description of wheat rusts and their virulence variations determined through annual pathotype surveys and controlled multi-pathotype tests. Advances in Agriculture 7, 3-4.

Gut, I.G., 2001. Automation in genotyping of single nucleotide polymorphisms. Human Mutation 17, 475-492.

Halstead, A., Henricot, B., 2010. Pest and Diseases. First American Edition DK Publishing. New York.

Hawkes, J.G., Gerrish, E.E., Rick, C.M., 1981. Germplasm collection, preservation, and use In: Plant Breeding II (Frey KJ, ed.). The Iowa State University Press/ Ames.

Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J.-M., Skovmand, B., Taba, S., Warburton, M., 1999. Plant genetic resources: what can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences 96, 5937-5943.

Hong, Y.-H., Xiao, N., Zhang, C., Su, Y., Chen, J.-M., 2009. Principle of diversity arrays technology (DArT) and its applications in genetic research of plants. Yi Chuan= Hereditas 31, 359-364.

Hovmøller, M.S., Walter, S., Bayles, R.A., Hubbard, A., Flath, K., Sommerfeldt, N., Leconte, M., Czembor, P., Rodriguez‐Algaba, J., Thach, T., 2016. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near‐Himalayan region. Plant Pathology 65, 402-411.

Howard, A., Howard, G.L.C., 1909. Wheat in India: Its Production, Varieties and Improvement: The Empirical Dept. Agric. India. Thacker, Spink and Co., Calcutta, India.

Huerta-Espino, J., Singh, R.P., German, S., McCallum, B.D., Park, R.F., Chen, W.Q., Bhardwaj, S.C., Goyeau, H., 2011. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179, 143-160.

Jin, Y., Singh, R.P., Ward, R.W., Wanyera, R., Kinyua, M., Njau, P., Fetch, T., Pretorius, Z.A., Yahyaoui, A., 2007. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 91, 1096-1099.

Jin, Y., Szabo, L.J., Pretorius, Z.A., Singh, R.P., Ward, R., Fetch Jr, T., 2008. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease 92, 923-926.

Jin, Y., Szabo, L.J., Rouse, M.N., Fetch Jr, T., Pretorius, Z.A., Wanyera, R., Njau, P., 2009. Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Disease 93, 367-370.

Johannsen, W., 1903. Ueber Erblichkeit in Populationen und reinen Linien. Eine Beitrag zur Beleuchtung schwebender Selektionsfragen. Jena, Germany: Gustav Fischer.

Johannsen, W., 1926. Elemente der exakten Erblichkeitslehre. Jena, Germany: Gustav Fischer.

Johnson, R., Law, C.N., 1975. Genetic control of durable resistance to yellow rust (Puccinia striiformis) in the wheat cultivar Hybride de Bersee. Annals of Applied Biology 81, 385-391.

Khan, M.H., Bukhari, A., Dar, Z.A., Rizvi, S.M., 2013. Status and strategies in breeding for rust resistance in wheat. Agricultural Sciences 4, 292-301.

Khanfri, S., Boulif, M., Lahlali, R., 2018. Yellow rust (Puccinia striiformis): a serious threat to wheat production worldwide. Notulae Scientia Biologicae 10, 410-423.

Kislev, M.E., 1982. Stem rust of wheat 3300 years old found in Israel. Science 216, 993-994.

Knott, D.R., 1988. Using polygenic resistance to breed for stem rust resistance in wheat. In: Simmonds, N.W. and Rajaram, S., Eds., Breeding Strategies for Resistance to the Rusts of Wheat, CIMMYT, Mexico. 39-47.

Kolmer, J.A., 2009. Postulaton of leaf rust resistant genes in selected soft red winter wheats. Crop Science 43, 1266–1274.

Lewis, C.M., Persoons, A., Bebber, D.P., Kigathi, R.N., Maintz, J., Findlay, K., Bueno-Sancho, V., Corredor-Moreno, P., Harrington, S.A., Kangara, N., 2018. Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology 1, 1-9.

Loegering, W.Q., 1966. The relationship between host and pathogen in stem rust of wheat. Proceedings of the Second International Wheat Genetics Symposium. (Ed. J Mackey.) Lund, Sweden, 1963. Hereditas Supplement 2, 167-177.

Lukaszewski, A.J., Lapinski, B., Rybka, K., 2005. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenetic and Genome Research 109, 373-377.

Marasas, C.N., Smale, M., Singh, R.P., 2004. The economic impact in developing countries of leaf rust resistance breeding in CIMMYT-related spring bread wheat. CIMMYT.

Mateen, A., Khan, M.A., Rashid, A., Hussain, M., Rehman, S.U., Ahmed, M., 2015. Identification of leaf rust virulence pattern on wheat germplasm in relation to environmental conditions in Faisalabad. Academia Journal of Agricultural Research 3, 137-155.

McIntosh, R.A., 2009. History and status of the wheat rusts. R.A. McIntosh (Ed.), Proceedings of 2009 Technical Workshop, Borlaug Global Rust Initiative, Cd. Obregón, Sonora, Mexico, March 17–20, 2009, Borlaug Global Rust Initiative, Ithaca, New York, USA. 11-23.

McIntosh, R.A., Watson, I.A., 1982. Genetics of host-pathogen interactions in rusts. Academic Press, Oxford.

McIntosh, R.A., Wellings, C.R., Park, R.F., 1995. Wheat rusts: an atlas of resistance genes. CSIRO publishing.

McNeil, M.D., Hermann, S., Jackson, P.A., Aitken, K.S., 2011. Conversion of AFLP markers to high-throughput markers in a complex polyploid, sugarcane. Molecular Breeding 27, 395-407.

Milus, E.A., Kristensen, K., Hovmøller, M.S., 2009. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99, 89-94.

Mujeeb-Kazi, A., Kazi, A.G., Dundas, I., Rasheed, A., Ogbonnaya, F., Kishii, M., Bonnett, D., Wang, R.R.-C., Xu, S., Chen, P., 2013. Genetic diversity for wheat improvement as a conduit to food security. Advances in Agronomy 122, 179-257.

Mukoyi, F., Soko, T., Mulima, E., Mutari, B., Hodson, D., Herselman, L., Visser, B., Pretorius, Z.A., 2011. Detection of variants of wheat stem rust race Ug99 (Puccinia graminis f. sp. tritici) in Zimbabwe and Mozambique. Plant Disease 95, 1188-1188.

Mullan, D., Platteter, A., Teakle, N., Appels, R., Colmer, T., Anderson, J., Francki, M., 2005. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome / NRC Canada = Génome / Conseil national de recherches Canada. 48, 811.

Nazari, K., Mafi, M., Yahyaoui, A., Singh, R.P., Park, R.F., 2009. Detection of wheat stem rust (Puccinia graminis f. sp. tritici) race TTKSK (Ug99) in Iran. Plant Disease 93, 317-317.

Newcomb, M., Olivera, P.D., Rouse, M.N., Szabo, L.J., Johnson, J., Gale, S., Luster, D.G., Wanyera, R., Macharia, G., Bhavani, S., 2016. Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 106, 729-736.

Nunes, C.C., Dean, R.A., 2012. Host‐induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Molecular Plant Pathology 13, 519-529.

Olivera Firpo, P.D., Newcomb, M., Flath, K., Sommerfeldt‐Impe, N., Szabo, L.J., Carter, M., Luster, D.G., Jin, Y., 2017. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathology 66 1258-1266.

Olson, E.L., Rouse, M.N., Pumphrey, M.O., Bowden, R.L., Gill, B.S., Poland, J.A., 2013a. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theoretical and Applied Genetics 126, 2477-2484.

Olson, E.L., Rouse, M.N., Pumphrey, M.O., Bowden, R.L., Gill, B.S., Poland, J.A., 2013b. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theoretical and Applied Genetics 126, 1179-1188.

Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J., M., Ortiz-Monasterio, J.I., Reynolds, M., 2008. Climate change: can wheat beat the heat? Agriculture, Ecosystems & Environment 126, 46-58.

Pardey, P., Beddow, J., Kriticos, D., Hurley, T., Park, R., Duveiller, E., Sutherst, R., Burdon, J., Hodson, D., 2013. Right-Sizing Stem-Rust Research. Science 340, 147-148.

Pretorius, Z.A., Singh, R.P., Wagoire, W.W., Payne, T.S., 2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Disease 84, 203-203.

Pretorius, Z.A., Szabo, L.J., Boshoff, W.H.P., Herselman, L., Visser, B., 2012. First report of a new TTKSF race of wheat stem rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease 96, 590-590.

Rajaram, S., Singh, R.P., Torres, E., 1988. Current CIMMYT approaches in breeding wheat for rust resistance. Pp. 101–118 in: N.W. Simmonds and S. Rajaram (Eds.) Breeding strategies for resistance to the rusts of wheat. CIMMYT. Mexico.

Raman, H., Raman, R., Kilian, A., Detering, F., Long, Y., Edwards, D., Parkin, I.A.P., Sharpe, A.G., Nelson, M.N., Larkan, N., 2013. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 14, 1-13.

Randhawa, M.S., Bains, N.S., Sohu, V.S., Chhuneja, P., Trethowan, R.M., Bariana, H.S., Bansal, U., 2019. Marker assisted transfer of stripe rust and stem rust resistance genes into four wheat cultivars. Agronomy 9, 497.

Rehman, A.U., Khan, M.A., Muhammad, F., Ahmad, N., Hussain, M., 2009. Review of wheat breeding in Punjab-Pakistan. The Cereal Rusts 1.

Rehman, A.U., Sajjad, M., Khan, S.H., Ahmad, N., 2013. Prospects of Wheat Breeding for Durable Resistance against Brown, Yellow and Black Rust Fungi. International Journal of Agriculture & Biology 15, 1209‒1220.

Roelfs, A.P., Martens, J.W., 1988. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78, 526-533.

Sánchez-Sevilla, J.F., Horvath, A., Botella, M.A., Gaston, A., Folta, K., Kilian, A., Denoyes, B., Amaya, I., 2015. Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria× ananassa). PLoS One 10, e0144960.

Schneider, A., Molnár, I., Molnár-Láng, M., 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163, 1-19.

Shamanin, V., Salina, E., Zelenskiv, Y., Kokhmetova, A., Patpour, M., Holmoller, M., 2018. Large scale wheat stem rust outbreaks in Western Siberia/Northern Kazakhstan in 2015–2017. In Proceedings of the BGRI 2018 Technical Workshop.

Singh, R.P., 1992. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology (USA).

Singh, R.P., Herrera-Foessel, S., Huerta-Espino, J., Singh, S., Bhavani, S., Lan, C., Basnet, B.R., 2014. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. Journal of Integrative Agriculture 13, 255-261.

Singh, R.P., Hodson, D.P., Huerta-Espino, J., Jin, Y., Bhavani, S., Njau, P., Herrera-Foessel, S., Singh, P.K., Singh, S., Govindan, V., 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology 49, 465–481.

Singh, R.P., Huerta-Espino, J., Rajaram, S., 2000. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica 35, 133-139.

Singh, R.P., Huerta-Espino, J., William, H., 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry 29, 121-127.

Solh, M., Nazari, K., Tadesse, W., R., W.C., 2012. The growing threat of stripe rust worldwide. Borlaug Global Rust Initiative (BGRI) Conference. Beijing, China.

Stakman, E.C., Levine, M.N., 1922. The Determination of Biologic Forms of Puccinia Graminis on Triticum Spp. The University of Minnesota Agricultural Experiment Station.

Stakman, E.C., Piemeisel, F.J., 1917. A new strain of Puccinia graminis. Phytopathology 7, 73.

Suenaga, K., Singh, R.P., Huerta-Espino, J., William, H.M., 2003. Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93, 881-890.

Tanksley, S.D., McCouch, S.R., 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063-1066.

Tariq-Khan, M., Younas, M.T., Mirza, J.I., Awan, S.I., Jameel, M., Saeed, M., Mahmood, B., 2020. Evaluation of major and environmentally driven genes for resistance in Pakistani wheat landraces and their prospected potential against yellow rust. International Journal of Phytopathology 9, 145-156.

Vanderplank, J.E., 1963. Plant Disease: Epidemics and Control. Academic Press, New York, . 349.

Waqar, A., Khattak, S.H., Begum, S., Rehman, T., Rabia, Shehzad, A., Ajmal, W., Zia, S.S., Siddiqi, I., Ali, G.M., 2018. Stripe rust: A review of the disease, Yr genes and its molecular markers. Sarhad Journal of Agriculture 34, 188-201.

Warburton, M.L., Crossa, J., Franco, J., Kazi, M., Trethowan, R., Rajaram, S., Pfeiffer, W., Zhang, P., Dreisigacker, S., Ginkel, M.v., 2006. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149, 289-301.

Wilcoxson, R.D., Skovmand, B., Atif, A.H., 1975. Evaluation of wheat cultivars for ability to retard development of stem rust. Annals of Applied Biology 80, 275-281.

William, H.M., Singh, R.P., Huerta-Espino, J., Palacios, G., Suenaga, K., 2006. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49, 977-990.

Zadoks, J.C., 1961. Yellow rust on wheat studies in epidemiology and physiologic specialization. Tijdschrift over Plantenziekten 67, 69-256.



  • There are currently no refbacks.