A COMPREHENSIVE NOTE ON TRICHODERMA AS A POTENTIAL BIOCONTROL AGENT AGAINST SOIL BORNE FUNGAL PATHOGENS: A REVIEW

Amjad Ali, Muhammad Ahmad Zeshan, Muhammad Mehtab, Saad Khursheed, Muhammad Mudasir, Muhammad Abid, Mubashar Mahdi, Hafiz Abdul Rauf, Shahid Ameer, Muhammad Younis, Muhammad Tanveer Altaf, Abdullah Tahir

Abstract


The extensive use of synthetic pesticides has a harmful impact on the environment, plants and animal health. It is a big challenge for all farming systems to develop novel approaches, which are eco-friendly and improve food quality. As compared to synthetic pesticides, the use of beneficial microbes is the best option to maintain the environmental condition because they are cost-effective and ecofriendly. In the recent era, biological antagonistic microorganisms (Trichoderma spp.) are the best approach to control the soil-borne fungal pathogens associated with plant roots of agriculturally important crops. Due to fast growth and rhizospheric colonization ability, this fungus competes with other pathogenic soil-borne fungi by producing different metabolites (volatile and non-volatile). Trichoderma protected the plants from pathogenic fungi through mycoparasitic and antibiosis capability. Furthermore, it has the ability to improve plant health by inducing SAR (Systemic acquired resistance), ISR (Induce systemic resistance), producing antifungal enzymes (α-1, 3-glucanases, Trichodermaketone, and trichodermin) and antioxidant enzymes that strengthen the immune system by increasing activities of guaiacol peroxidase (GPX), ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) after pathogen attack. Development of bio-fungicide formulation by using the spore of Trichoderma species (T. harzianum, T. viride, and T. virens) are most effective against soil-borne pathogenic fungi at different concentrations and temperatures. This review article has significantly focused on gathering and summarizing the most recent literature to highlight the visible production and application of Trichoderma as a biomonitoring and biocontrol agent in plant diseases management program.


Keywords


Trichoderma spp.; Soil born fungi; Synthetic pesticides; Antagonistic microbes; Bio-fungicide formulation

Full Text:

PDF

References


Abo‐Elyousr, K.A., Abdel‐Hafez, S.I., Abdel‐Rahim, I.R., 2014. Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology 162, 567-574.

Ahmed, A.S., Sánchez, C.P., Candela, M.E., 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology 106, 817-824.

Al-Mekhlafi, N.A., Abdullah, Q.Y., Al-Helali, M.F., Alghalibi, S.M., 2019. Antagonistic Potential of Native Trichoderma species against Tomato Fungal Pathogens in Yemen. International Journal of Molecular Microbiology 2, 1-10.

Alizadeh, H., Behboudi, K., Ahmadzadeh, M., Javan-Nikkhah, M., Zamioudis, C., Pieterse, C.M., Bakker, P.A., 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control 65, 14-23.

Alvindia, D.G., Hirooka, Y., 2011. Identification of Clonostachys and Trichoderma spp. from banana fruit surfaces by cultural, morphological and molecular methods. Mycology 2, 109-115.

Ambuse, M., Chatage, V., Bhale, U., 2012. Influence of Trichoderma spp. against Alternaria tenuissima inciting leaf spot of Rumex acetosa L. Bioscience Discovery 3, 259-262.

Amin, F., Razdan, V., 2010. Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. Journal of Phytology 2, 38-41.

Anzai, H., Nisizawa, K., Matsuda, K., 1984. Purification and characterization of a cellulase from Dolabella auricularia. The Journal of Biochemistry 96, 1381-1390.

Arenas, O.R., Olguín, J.F.L., Ramón, D.J., Sangerman-Jarquín, D.M., Lezama, C.P., Morales, P.S., Lara, M.H., 2018. Biological Control of Fusarium oxysporum in Tomato Seedling Production with Mexican Strains of Trichoderma. Fusarium: Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers, 155.

Bader, A.N., Salerno, G.L., Covacevich, F., Consolo, V.F., 2020. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University-Science 32, 867-873.

Balaji, L., Ahir, R., 2011. Evaluation of plant extracts and biocontrol agents against leaf spot disease of brinjal. Indian Phytopath 64, 378-380.

Banani, H., Roatti, B., Ezzahi, B., Giovannini, O., Gessler, G., Pertot, I., Perazzolli, M., 2014. Characterization of resistance mechanisms activated by T richoderma harzianum T39 and benzothiadiazole to downy mildew in different grapevine cultivars. Plant pathology 63, 334-343.

Baron, N.C., Rigobelo, E.C., Zied, D.C., 2019. Filamentous fungi in biological control: current status and future perspectives. Chilean Journal of Agricultural Research 79, 307-315.

Bastakoti, S., Belbase, S., Manandhar, S., Arjyal, C., 2017. Trichoderma species as biocontrol agent against soil borne fungal pathogens. Nepal Journal of Biotechnology 5, 39-45.

Benítez, T., Rincón, A.M., Limón, M.C., Codon, A.C., 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology 7, 249-260.

Bisby, G., 1939. Trichoderma viride Pers. ex Fries, and notes on Hypocrea. Transactions of the British Mycological Society 23, 149-168.

Bissett, J., 1991. A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Canadian Journal of Botany 69, 2418-2420.

Brotman, Y., Landau, U., Cuadros-Inostroza, Á., Takayuki, T., Fernie, A.R., Chet, I., Viterbo, A., Willmitzer, L., 2013. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens 9, e1003221.

Buensanteai, N., Mukherjee, P.K., Horwitz, B.A., Cheng, C., Dangott, L.J., Kenerley, C.M., 2010. Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in Pichia pastoris. Protein expression and purification 72, 131-138.

Cardoza, R., Vizcaíno, J., Hermosa, M., Sousa, S., González, F., Llobell, A., Monte, E., Gutiérrez, S., 2006. Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genetics and Biology 43, 164-178.

Carreras-Villaseñor, N., Sánchez-Arreguín, J.A., Herrera-Estrella, A.H., 2012. Trichoderma: Sensing the environment for survival and dispersal. Microbiology 158, 3-16.

Chakraborty, B., Chakraborty, U., Saha, A., Dey, P., Sunar, K., 2010. Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles. Global Journal of Biotechnology & Biochemistry 5, 55-61.

Chaverri, P., Gazis, R.O., Samuels, G.J., 2011. Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia 103, 139-151.

Chohan, S., Idrees, S., Abid, M., Perveen, R., Malik, M.T., 2019. Biological potential of Trichoderma species in the control of some phytopathogenic fungi. Pakistan Journal of Phytopathology 31, 201-206.

Cordier, C., Edel-Hermann, V., Martin-Laurent, F., Blal, B., Steinberg, C., Alabouvette, C., 2007. SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. Journal of microbiological methods 68, 60-68.

Cortes, C., Gutierrez, A., Olmedo, V., Inbar, J., Chet, I., Herrera-Estrella, A., 1998. The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Molecular and General Genetics MGG 260, 218-225.

Cumagun, C.J., Hockenhull, J., Lübeck, M., 2000. Characterization of Trichoderma isolates from Philippine rice fields by UP‐PCR and rDNA‐ITS1 analysis: identification of UP‐PCR markers. Journal of Phytopathology 148, 109-115.

Das, B.C., Hazarika, D.K.,, 2000. Biological management of sheath blight of rice. Indian Journal of Phytopathology 53, 433-435.

de las Mercedes Dana, M., Pintor-Toro, J.A., Cubero, B., 2006. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology 142, 722-730.

Debuchy, R., Berteaux‐Lecellier, V., Silar, P., 2010. Mating systems and sexual morphogenesis in ascomycetes. Cellular and Molecular Biology of Filamentous Fungi, 499-535.

Delgado-Jarana, J., Pintor-Toro, J.A., Benítez, T., 2000. Overproduction of β-1, 6-glucanase in Trichoderma harzianum is controlled by extracellular acidic proteases and pH. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1481, 289-296.

Dingley, J.M., 1957. Life history studies in the genus Hypocrea Fr. Transactions of the Royal Society of New Zealand 84, 689-693.

Dixit, P., Mukherjee, P.K., Sherkhane, P.D., Kale, S.P., Eapen, S., 2011. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. Journal of hazardous materials 192, 270-276.

Djonovic, S., Vargas, W.A., Kolomiets, M.V., Horndeski, M., Wiest, A., Kenerley, C.M., 2007. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology 145, 875-889.

Doi, Y., 1969. Revision of the Hypocreales with cultural observations IV. The genus Hypocrea and its allies in Japan (1) General part. Bulletin of the National Science Museum Tokyo, Japan 12, 693-724.

Doi, Y., 1972. Revision of the Hypocreales with cultural observations IV. The genus Hypocrea and its allies in Japan. Enumeration of the species. Bulletin of the National Science Museum Tokyo, Japan 15, 649-751.

Domsch, K.H., Gams, W., Anderson, T.H., 1980. Paecilomyces farinosus. In: Domsch, K.H., Gams, W. and Anderson, T.H. (eds) Compendium of Soil Fungi. Academic Press, London, 527–528.

Druzhinina, I.S., Kopchinskiy, A.G., Kubicek, C.P., 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47, 55.

Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I.V., Kubicek, C.P., 2011. Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology 9, 749-759.

Dwivedi, S., Dwivedi, N., 2012. In vitro bio efficacy of some selected fungal antagonists against guava wilt pathogen. IOSR Journal of Engineering 2, 1217-1223.

Eisendle, M., Oberegger, H., Buttinger, R., Illmer, P., Haas, H., 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3, 561-563.

El-Katatny, M., Gudelj, M., Robra, K.-H., Elnaghy, M., Gübitz, G., 2001. Characterization of a chitinase and an endo-β-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology and Biotechnology 56, 137-143.

Fahmi, A., Eissa, R., El-Halfawi, K., Hamza, H., Helwa, M., 2016. Identification of Trichoderma spp. by DNA barcode and screening for cellulolytic activity. Journal of Microbiology and Biochemistry Technology 8, 202-209.

Faruk, M., Rahman, M., 2017. Effect of substrates to formulate Trichoderma harzianum based bio-fungicide in controlling seedling disease (Rhizoctonia solani) of brinjal. Bangladesh Journal of Agricultural Research 42, 159-170.

Feng, X.M., Holmberg, A.-I.J., Sundh, I., Ricard, T., Melin, P., 2011. Specific SCAR markers and multiplex real-time PCR for quantification of two Trichoderma biocontrol strains in environmental samples. BioControl 56, 903-913.

Ferrigo, D., Raiola, A., Piccolo, E., Scopel, C., Causin, R., 2014. Trichoderma harzianum T22 induces in maize systemic resistance against Fusarium verticillioides. Journal of Plant Pathology 96, 133-142.

Fravel, D., 2005. Commercialization and implementation of biocontrol. Annual Review of Phytopathology 43, 337-359.

Gajera, H., Domadiya, R., Patel, S., Kapopara, M., Golakiya, B., 2013. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system–a review. Current Research in Microbiology and Biotechnology 1, 133-142.

Ganuza, M., Pastor, N., Boccolini, M., Erazo, J., Palacios, S., Oddino, C., Reynoso, M.M., Rovera, M., Torres, A.M., 2019. Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. Journal of Applied Microbiology 126, 608-623.

Geistlinger, J., Zwanzig, J., Heckendorff, S., Schellenberg, I., 2015. SSR markers for Trichoderma virens: their evaluation and application to identify and quantify root-endophytic strains. Diversity 7, 360-384.

Ghanbarzadeh, B., Safaie, N., Mohammadi Goltapeh, E., Rezaee Danesh, Y., Khelghatibana, F., 2016. Biological control of Fusarium basal rot of onion using Trichoderma harzianum and Glomus mosseae. Journal of Crop Protection 5, 359-368.

Ghazanfar, M.U., Raza, M., Raza, W., Qamar, M.I., 2018a. Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Protection 2.

Ghazanfar, M.U., Raza, M., Raza, W., Qamar, M.I., 2018b. Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protection 2, 109-135.

Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S., Kim, H., 2018. Myco-phytoremediation of arsenic-and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. Ecotoxicology and Environmental Safety 151, 279-284.

Gupta, M., Dohroo, N., Gangta, V., Shanmugam, V., 2010. Effect of microbial inoculants on rhizome disease and growth parameters of ginger. Indian Phytopathology 63, 438-441.

Ha, T.N., 2010. Using Trichoderma species for biological control of plant pathogens in Viet Nam. Journal of the International Society for Southeast Asian Agricultural Sciences 16, 17-21.

Harleen, K., Chander, M., 2011. In vitro and in vivo evaluation of antagonistic potentiality of Trichoderma spp. against Fusarium moniliforme Sheld. causing stalk rot of maize. Plant Disease Research 26.

Harman, G.E., 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease 84, 377-393.

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004a. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2, 43-56.

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004b. Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology 2, 43-56.

Hassan, M.M., Farid, M.A., Gaber, A., 2019. Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence-characterized amplified region markers. Egyptian Journal of Biological Pest Control 29, 1-8.

Hassanein, N.M., 2012. Biopotential of some Trichoderma spp. against cotton root rot pathogens and profiles of some of their metabolites. African Journal of Microbiology Research 6, 4878-4890.

Hermosa, M.R., Grondona, I., Díaz-Mínguez, J.M., Iturriaga, E.A., Monte, E., 2001. Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Current Genetics 38, 343-350.

Hermosa, R., Botella, L., Keck, E., Jiménez, J.Á., Montero-Barrientos, M., Arbona, V., Gómez-Cadenas, A., Monte, E., Nicolás, C., 2011. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. Journal of plant physiology 168, 1295-1302.

Horn, I.R., van Rijn, M., Zwetsloot, T.J., Basmagi, S., Dirks-Mulder, A., van Leeuwen, W.B., Ravensberg, W.J., Gravendeel, B., 2016. Development of a multiplex Q-PCR to detect Trichoderma harzianum Rifai strain T22 in plant roots. Journal of microbiological methods 121, 44-49.

Howell, C., Hanson, L., Stipanovic, R., Puckhaber, L., 2000. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90, 248-252.

Ibrahim, M.E.-S., 2017. In vitro Antagonistic Activity of Trichoderma harzianum against Rhizoctonia solani The Causative Agent of Potato Black Scurf and Stem Canker. Egyptian Journal of Botany 57, 173-185.

Jat, J., Agalave, H., 2013. Antagonistic properties of Trichoderma species against oilseed-borne fungi. Science Research Reporter 3, 171-174.

Jeyalakshmi, C., Rettinassababady, C., Nema, S., 2013. Integrated management of sesame diseases. Journal of Biopesticides 6, 68.

Jogaiah, S., Abdelrahman, M., Tran, L.S.P., Ito, S.I., 2018. Different mechanisms of Trichoderma virens‐mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular plant pathology 19, 870-882.

John, R.P., Tyagi, R., Prévost, D., Brar, S.K., Pouleur, S., Surampalli, R., 2010. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection 29, 1452-1459.

Joshi, D., Misra, S., 2013. Characterization of Trichoderma isolates from sugarcane agro-ecosystem and their efficacy against Colletotrichum falcatum causing red rot of sugarcane. Sugar Tech 15, 192-196.

Kakvan, N., Heydari, A., Zamanizadeh, H.R., Rezaee, S., Naraghi, L., 2013. Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Protection 53, 80-84.

Kale, G., Rewale, K., Sahane, S., Magar, S., 2018. Isolation of Trichoderma spp. from the rhizospheric soils of tomato crop grown in Marathwada region. Journal of Pharmacognosy and Phytochemistry 7, 3360-3362.

Karima, H., Nadia, G., 2012. In vitro study on Fusarium solani and Rhizoctonia solani isolates causing the damping off and root rot diseases in tomatoes. Nature and Science 10, 16-25.

Kasa, P., Modugapalem, H., Battini, K., 2015. Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. Journal of natural science, biology, and medicine 6, 360.

Kashyap, P.L., Solanki, M.K., Kushwaha, P., Kumar, S., Srivastava, A.K., 2019. Biocontrol Potential of Salt-Tolerant Trichoderma and Hypocrea Isolates for the Management of Tomato Root Rot Under Saline Environment. Journal of Soil Science and Plant Nutrition, 1-17.

Kexiang, G., Xiaoguang, L., Yonghong, L., TIANBO, Z., Shuliang, W., 2002. Potential of Trichoderma harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. piricola, the cause of apple ring rot. Journal of Phytopathology 150, 271-276.

Khan, M.R., Haque, Z., Rasool, F., Salati, K., Khan, U., Mohiddin, F.A., Zuhaib, M., 2019. Management of root-rot disease complex of mungbean caused by Macrophomina phaseolina and Rhizoctonia solani through soil application of Trichoderma spp. Crop Protection 119, 24-29.

Kim, C.S., Park, M.S., Kim, S.C., Maekawa, N., Yu, S.H., 2012. Identification of Trichoderma, a competitor of shiitake mushroom (Lentinula edodes), and competition between Lentinula edodes and Trichoderma species in Korea. The Plant Pathology Journal 28, 137-148.

Kredics, L., Chen, L., Kedves, O., Büchner, R., Hatvani, L., Allaga, H., Nagy, V.D., Khaled, J.M., Alharbi, N.S., Vágvölgyi, C., 2018. Molecular tools for monitoring Trichoderma in agricultural environments. Frontiers in microbiology 9, 1599.

Kumar, A., Scher, K., Mukherjee, M., Pardovitz-Kedmi, E., Sible, G.V., Singh, U.S., Kale, S.P., Mukherjee, P.K., Horwitz, B.A., 2010. Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochemical and Biophysical Research Communications 398, 765-770.

Kumar, S., Thakur, M., Rani, A., 2014. Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. African Journal of Agricultural Research 9, 3838-3852.

Kumar, V., Parkhi, V., Kenerley, C.M., Rathore, K.S., 2009. Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230, 277-291.

Lakhdari, W., Dehliz, A., Mlik, R., Hammi, H., Benlamoudi, W., Acheuk, F., Doumandji-Mitiche, B., 2018. Inhibitory effect of Trichoderma harzianum on mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici and Alternaria solani. Organic Agriculture 8, 225-230.

Latifian, M., Hamidi-Esfahani, Z., Barzegar, M., 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technology 98, 3634-3637.

Lee, S., Yap, M., Behringer, G., Hung, R., Bennett, J.W., 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal biology and biotechnology 3, 7.

Li, J.-X., Zhang, F., Li, J., Zhang, Z., Bai, F.-W., Chen, J., Zhao, X.-Q., 2019a. Rapid production of lignocellulolytic enzymes by Trichoderma harzianum LZ117 isolated from Tibet for biomass degradation. Bioresource Technology 292, 122063.

Li, M.-F., Li, G.-H., Zhang, K.-Q., 2019b. Non-Volatile Metabolites from Trichoderma spp. Metabolites 9, 58.

Li, Y.-T., Hwang, S.-G., Huang, Y.-M., Huang, C.-H., 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110, 275-282.

Linke, R., Thallinger, G.G., Haarmann, T., Eidner, J., Schreiter, M., Lorenz, P., Seiboth, B., Kubicek, C.P., 2015. Restoration of female fertility in Trichoderma reesei QM6a provides the basis for inbreeding in this industrial cellulase producing fungus. Biotechnology for Biofuels 8, 1-10.

López-Mondéjar, R., Ros, M., Pascual, J.A., 2011. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control 56, 59-66.

Malmierca, M.G., Cardoza, R.E., Alexander, N.J., McCormick, S.P., Collado, I.G., Hermosa, R., Monte, E., Gutiérrez, S., 2013. Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal genetics and biology 53, 22-33.

Manjunatha, S., Naik, M., Khan, M., Goswami, R., 2013. Evaluation of bio-control agents for management of dry root rot of chickpea caused by Macrophomina phaseolina. Crop protection 45, 147-150.

Marzano, M., Gallo, A., Altomare, C., 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological control 67, 397-408.

Mastouri, F., Björkman, T., Harman, G.E., 2012. Trichoderma harzianum enhances antioxidant defense of tomato seedlings and resistance to water deficit. Molecular Plant-Microbe Interactions 25, 1264-1271.

Mathys, J., De Cremer, K., Timmermans, P., Van Kerkhove, S., Lievens, B., Vanhaecke, M., Cammue, B., De Coninck, B., 2012. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Frontiers in plant science 3, 108.

Mazrou, Y.S., Makhlouf, A.H., Elseehy, M.M., Awad, M.F., Hassan, M.M., 2020. Antagonistic activity and molecular characterization of biological control agent Trichoderma harzianum from Saudi Arabia. Egyptian Journal of Biological Pest Control 30, 4.

Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B.A., Mukherjee, P.K., 2018. Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews 32, 62-85.

Meng, X., Ma, L., Li, T., Zhu, H., Guo, K., Liu, D., Ran, W., Shen, Q., 2020. The functioning of a novel protein, swollenin, in promoting the lignocellulose degradation capacity of Trichoderma guizhouense NJAU4742 from a proteomic perspective. Bioresource Technology 317, 123992.

Mishra, A., Nautiyal, C.S., 2009. Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World journal of Microbiology and Biotechnology 25, 1175-1180.

Mohammed, A.S., El Hassan, S.M., Elballa, M.M., Elsheikh, E.A., 2020. The role of Trichoderma, VA mycorrhiza and dry yeast in the control of Rhizoctonia disease of potato (Solanum tuberosum L.). University of Khartoum Journal of Agricultural Sciences 16.

Monfil, V.O., Casas-Flores, S., 2014. Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture, Biotechnology and Biology of Trichoderma. Elsevier, pp. 429-453.

Montero-Barrientos, M., Hermosa, R., Cardoza, R.E., Gutierrez, S., Nicolas, C., Monte, E., 2010. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology 167, 659-665.

Morán-Diez, E., Hermosa, R., Ambrosino, P., Cardoza, R.E., Gutiérrez, S., Lorito, M., Monte, E., 2009. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Molecular plant-microbe interactions 22, 1021-1031.

Mukherjee, P., Mukhopadhyay, A., Sarmah, D., Shrestha, S., 1995. Comparative antagonistic properties of Gliocladium virens and Trichoderma harzianum on Sclerotium rolfsii and Rhizoctonia solani—its relevance to understanding the mechanisms of biocontrol. Journal of Phytopathology 143, 275-279.

Mukherjee, P.K., Nautiyal, C.S., Mukhopadhyay, A., 2008. Molecular Mechanisms of Biocontrol by Trichoderma spp, Molecular mechanisms of plant and microbe coexistence. Springer, pp. 243-262.

Mukhopadhyay, R., Kumar, D., 2020. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control 30, 1-8.

Munir, S., Jamal, Q., Bano, K., Sherwani, S.K., Abbas, M.N., Azam, S., Kan, A., Ali, S., Anees, M., 2014. Trichoderma and biocontrol genes. Scientia 2, 40-45.

Mustafa, A., Khan, M.A., Inam-ul-Haq, M., Pervez, M.A., Umar, U., 2009. Usefulness of different culture media for in vitro evaluation of Trichoderma spp. against seed borne fungi of economic importance. Pakistan Journal of Phytopathology 21, 83-88.

Muthumeenakshi, S., Mills, P., Brownd, A.E., Seaby, D., 1994. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology 140, 769-777.

Nicolás, C., Hermosa, R., Rubio, B., Mukherjee, P.K., Monte, E., 2014. Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science 228, 71-78.

Okigbo, R., Emeka, A., 2010. Biological control of rot-inducing fungi of water yam (Dioscorea alata) with Trichoderma harzianum, Pseudomonas syringae and Pseudomonas chlororaphis. Journal of Stored Products and Postharvest Research 1, 18-23.

Okon Levy, N., Meller Harel, Y., Haile, Z., Elad, Y., Rav‐David, E., Jurkevitch, E., Katan, J., 2015. Induced resistance to foliar diseases by soil solarization and T richoderma harzianum. Plant pathology 64, 365-374.

Okuda, T., Fujiwara, A., Fujiwara, M., 1982. Correlation between species of Trichoderma and production patterns of isonitrile antibiotics. Agricultural and Biological Chemistry 46, 1811-1822.

Oskiera, M., Szczech, M., Stępowska, A., Smolińska, U., Bartoszewski, G., 2017. Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biological Control 113, 65-72.

Özkale, E., 2017. Tarımsal üretimde yararlanılan Trichoderma ürünleri ve metabolitleri. International Journal of Secondary Metabolite 4, 123-136.

Paramasivan, M., Chandrasekaran, A., Mohan, S., Muthukrishnan, N., 2014. Ecological management of tropical sugar beet (TSB) root rot (Sclerotium rolfsii (Sacc.) by rhizosphere Trichoderma species. Archives of Phytopathology and Plant Protection 47, 1629-1644.

Park, M.-S., Seo, G.-S., Bae, K.-S., Yu, S.-H., 2005. Characterization of Trichoderma spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. The Plant Pathology Journal 21, 229-236.

Parmar, H., Hassan, M.M., Bodar, N., Umrania, V., Patel, S., Lakhani, H., 2015. In vitro antagonism between phytopathogenic fungi Sclerotium rolfsii and Trichoderma strains. International Journal of Applied Sciences and Biotechnology 3, 16-19.

Pérez, G., Verdejo, V., Gondim-Porto, C., Orlando, J., Carú, M., 2014. Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities. Journal of Zhejiang University SCIENCE B 15, 966-978.

Plett, J.M., Tisserant, E., Brun, A., Morin, E., Grigoriev, I.V., Kuo, A., Martin, F., Kohler, A., 2015. The mutualist Laccaria bicolor expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses. Molecular Plant-Microbe Interactions 28, 261-273.

Poveda, J., Abril-Urias, P., Escobar, C., 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology 11, 992.

Pozo, M.J., Baek, J.-M., Garcıa, J.M., Kenerley, C.M., 2004. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology 41, 336-348.

Prusky, D., Yakoby, N., 2003. Pathogenic fungi: leading or led by ambient pH? Molecular Plant Pathology 4, 509-516.

Puyam, A., 2016. Advent of Trichoderma as a bio-control agent-a review. Journal of Applied and Natural Science 8, 1100-1109.

Qualhato, T.F., Lopes, F.A.C., Steindorff, A.S., Brandao, R.S., Jesuino, R.S.A., Ulhoa, C.J., 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnology letters 35, 1461-1468.

Rai, S., Kashyap, P.L., Kumar, S., Srivastava, A.K., Ramteke, P.W., 2016. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus 5, 1939.

Ramakrishna, A., Desai, S., Devi, G.U., Maheswari, T.U., 2017. Efficacy of different isolates of Trichoderma against early blight of tomato. Journal of Pharmacognosy and Phytochemistry 6, 1060-1062.

Ranga, A., Khayum, S., Patibanda, A., 2017. Genetic Diversity of Trichoderma sp. from rhizosphere regions of different cropping systems using RAPD markers. International Journal of Current Microbiology and Applied Sciences 6, 1618-1624.

Rifai, M.A., 1969. A revision of the genus Trichoderma. Mycological Papers 116, 1-56.

Rosado, I.V., Rey, M., Codón, A.C., Govantes, J., Moreno-Mateos, M.A., Benítez, T., 2007. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genetics and Biology 44, 950-964.

Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S.L., Lorito, M., 2009. Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular plant-microbe interactions 22, 291-301.

Sagar, M., Meah, M., Rahman, M., Ghose, A., 2011. Determination of genetic variations among different Trichoderma isolates using RAPD marker in Bangladesh. Journal of the Bangladesh Agricultural University 9, 9–20.

Salas-Marina, M.A., Isordia-Jasso, M.I., Islas-Osuna, M.A., Delgado-Sánchez, P., Jiménez-Bremont, J.F., Rodríguez-Kessler, M., Rosales-Saavedra, M.T., Herrera-Estrella, A., Casas-Flores, S., 2015. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science 6, 77.

Sallam, N.M., Eraky, A.M., Sallam, A., 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Reports 46, 4463-4470.

Salwan, R., Rialch, N., Sharma, V., 2019. Bioactive volatile metabolites of Trichoderma: An overview. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 87-111.

Sandhu, J.S., 2014. Mycoparasitism associated proteins from Trichoderma spp.: Relevance in combating fungal diseases of plants. Crop Improv 41, 1-15.

Sangeetha, A., Kumar, P.S., Shankarganesh, K., 2011. In vitro evaluation of plant products and bio-control agents against Colletotrichum capsici causing fruit rot of Chilli (Capsicum annum L.). Pesticide Research Journal 23, 164-167.

Saravanakumar, K., Wang, M.-H., 2020. Isolation and molecular identification of Trichoderma species from wetland soil and their antagonistic activity against phytopathogens. Physiological and Molecular Plant Pathology 109, 101458.

Sarfraz, M., Khan, S., Moosa, A., Farzand, A., Ishaq, U., Naeem, I., Khan, W., 2018. Promising Antifungal Potential of Selective Botanical Extracts, Fungicides and Trichoderma Isolates Against Alternaria solani. Cercetari Agronomice in Moldova 51, 65-74.

Shah, M.M., Afiya, H., 2019. Introductory chapter: identification and isolation of Trichoderma spp.-Their significance in agriculture, human health, industrial and environmental application, Trichoderma-The Most Widely Used Fungicide. IntechOpen.

Shahid, M., Srivastava, M., Pandey, S., Singh, A., Kumar, V., 2014. Molecular characterization of Trichoderma sp. isolated from rhizospheric soils of Uttar Pradesh (India) based on microsatellite profiles. African Journal of Biotechnology 13.

Shahid, M., Srivastava, M., Sharma, A., Singh, A., Pandey, S., Kumar, V., Pathak, N., Rastogi, S., 2013. Molecular characterization of Trichoderma longibrachiatum 21PP isolated from rhizospheric soil based on universal ITS primers. African Journal of Microbiology Research 71, 4902-4906.

Shakoor, S., Inam-ul-Haq, M., Bibi, S., Ahmed, R., 2015. Influence of root inoculations with vasicular arbuscular mycorrhizae and rhizomyx for the management of root rot of chickpea. Pakistan Journal of Phytopathology 27, 153-158.

Sharma, K., Mishra, A.K., Misra, R.S., 2009. Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. Journal of Phytopathology 157, 51-56.

Sharma, P., Kumar, V., Ramesh, R., Saravanan, K., Deep, S., Sharma, M., Mahesh, S., Dinesh, S., 2011a. Biocontrol genes from Trichoderma species: A review. African Journal of Biotechnology 10, 19898-19907.

Sharma, P., Patel, A.N., Saini, M.K., Deep, S., 2012. Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). Journal of Agricultural Science 4, 65.

Sharma, P., Sharma, M., Raja, M., Shanmugam, V., 2014. Status of Trichoderma research in India: A review. Indian Phytopathol 67, 1-19.

Sharma, S., Gupta, G., Ramteke, R., 2011b. Colletotrichum truncatum [(Schw.) Andrus & WD Moore], the causal agent of anthracnose of soybean [Glycine max (L.) Merrill]—A Review. Soybean Research 9, 31-52.

Singh, A., Shahid, M., Srivastava, M., Pandey, S., Sharma, A., Kumar, V., 2014. Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virology and Mycology 3, 1-7.

Singh, B.N., Singh, A., Singh, S.P., Singh, H.B., 2011. Trichoderma harzianum-mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. European Journal of Plant Pathology 131, 121-134.

Singh, R.P., Huerta-Espino, J., Roelfs, A.P., 2002. Wheat for Bread and other Foods, in: Curtis, B.C., Rjaram, S., Macpherson, H.G. (Eds.), Bread Wheat: Improvement and Production. FAO, Rome, Italy, pp. 227-249.

Skoneczny, D., Oskiera, M., Szczech, M., Bartoszewski, G., 2015. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia microbiologica 60, 297-307.

Sriram, S., Savitha, M., Ramanujam, B., 2010. Trichoderma-enriched coco-peat for the management of Phytophthora and Fusarium diseases of chilli and tomato in nurseries. Journal of Biological Control 24, 311-316.

Srivastava, A., Kumar, S.N., Aggarwal, P.K., 2010. Assessment on vulnerability of sorghum to climate change in India. Agriculture, ecosystems environment 138, 160-169.

Srivastava, M., Kumar, V., Shahid, M., Sonika, P., Singh, A., 2016. Trichoderma-a potential and effective bio fungicide and alternative source against notable phytopathogens: A review. African Journal of Agricultural Research 11, 310-316.

Srivastava, M., Shahid, M., Pandey, S., Singh, A., Kumar, V., Gupta, S., Maurya, M., 2014. Trichoderma genome to genomics: a review. Journal of Data Mining in Genomics & Proteomics 5, 2153-0602.

Su, S., Zeng, X., Bai, L., Li, L., Duan, R., 2011. Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Science of the Total Environment 409, 5057-5062.

Sumana, K., Devaki, N., 2012. In vitro evaluation of some bioagents against tobacco wilt pathogen. Journal of Biopesticides 5, 18.

Tekiner, N., Kotan, R., Tozlu, E., Dadaşoğlu, F., 2019. Determination of some biological control agents against Alternaria fruit rot in quince. Alinteri Journal of Agriculture Science 34, 25-31.

Thakkar, A., Saraf, M., 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Archives of Phytopathology and Plant Protection 48, 459-474.

Tijerino, A., Cardoza, R.E., Moraga, J., Malmierca, M.G., Vicente, F., Aleu, J., Collado, I.G., Gutiérrez, S., Monte, E., Hermosa, R., 2011. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology 48, 285-296.

Tiwari, P., Misra, B., Sangwan, N.S., 2013. β-Glucosidases from the fungus Trichoderma: an efficient cellulase machinery in biotechnological applications. BioMed Research International https://doi.org/10.1155/2013/203735.

Tjamos, E., Antoniou, P., Skourtaniotis, A., Kikrilis, E., Tjamos, S., 2006. Impermeable plastics and methyl bromide alternatives in controlling soilborne fungal pathogens of strawberries in Greece, Proceedings 12th Congress Mediterranean Phytopathological Union, pp. 255-257.

Vargas-Inciarte, L., Fuenmayor-Arrieta, Y., Luzardo-Méndez, M., Costa-Jardin, M.D., Vera, A., Carmona, D., Homen-Pereira, M., Costa-Jardin, P.D., San-Blas, E., 2019. Use of different Trichoderma species in cherry type tomatoes (Solanum lycopersicum L.) against Fusarium oxysporum wilt in tropical greenhouses. Agronomía Costarricense 43, 85-100.

Verma, J.P., Yadav, J., Tiwari, K.N., Jaiswal, D.K., 2014. Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biology and Biochemistry 70, 33-37.

Verma, M., Brar, S.K., Tyagi, R., Surampalli, R., Valero, J., 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal 37, 1-20.

Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L., Lorito, M., 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry 40, 1-10.

Viterbo, A., Haran, S., Friesem, D., Ramot, O., Chet, I., 2001. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiology Letters 200, 169-174.

Waghunde, R.R., Shelake, R.M., Sabalpara, A.N., 2016. Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research 11, 1952-1965.

Win, T.T., Bo, B., Malec, P., Khan, S., Fu, P., 2021. Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential bio-control agent to suppress Fusarium soil borne fungal phytopathogens. Journal of Plant Pathology 103, 549-561.

Xia, X., Lie, T.K., Qian, X., Zheng, Z., Huang, Y., Shen, Y., 2011. Species diversity, distribution, and genetic structure of endophytic and epiphytic Trichoderma associated with banana roots. Microbial ecology 61, 619-625.

Yadav, S.K., Dave, A., Sarkar, A., Singh, H.B., Sarma, B.K., 2013. Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. International Journal of Agriculture, Environment and Biotechnology 6, 255-259.

Yao, Y., Li, Y., Chen, Z., Zheng, B., Zhang, L., Niu, B., Meng, J., Li, A., Zhang, J., Wang, Q., 2016. Biological control of potato late blight using isolates of Trichoderma. American Journal of Potato Research 93, 33-42.

You, J., Zhang, J., Wu, M., Yang, L., Chen, W., Li, G., 2016. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control 101, 31-38.

Zafra, G., Cortés-Espinosa, D.V., 2015. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review. Environmental Science and Pollution Research 22, 19426-19433.

Zaidi, N.W., Dar, M.H., Singh, S., Singh, U., 2014. Trichoderma species as abiotic stress relievers in plants, Biotechnology and Biology of Trichoderma. Elsevier, pp. 515-525.

Zhang, C.-l., Liu, S.-p., Lin, F.-c., Kubicek, C.P., Druzhinina, I.S., 2007. Trichoderma taxi sp. nov., an endophytic fungus from Chinese yew Taxus mairei. FEMS Microbiology Letters 270, 90-96.

Zhang, J., Jiang, Z., Su, H., Zhao, H., Cai, J., 2019. The complete chloroplast genome sequence of the endangered species Syringa pinnatifolia (Oleaceae). Nordic Journal of Botany 37, 1-11.

Zhong, Y.H., Wang, T.H., Wang, X.L., Zhang, G.T., Yu, H.N., 2009. Identification and characterization of a novel gene, TrCCD1, and its possible function in hyphal growth and conidiospore development of Trichoderma reesei. Fungal genetics and biology 46, 255-263.




DOI: https://doi.org/10.33804/pp.005.03.3934

Refbacks

  • There are currently no refbacks.