Validation of SSR Molecular Markers Linked to Drought Tolerant in Some Wheat Cultivars

Manal Eid


The present study was carried out to conduct drought tolerance in three wheat cultivars including susceptible (Gemmiza7) and tolerant (Sakha93 and Sahel1). Molecular characterization was done by 26 SSR markers located on chromosome7 which was associated with drought tolerance in many previous studies. 26 SSR markers were polymorphic and thus showed 100% polymorphism. The number of alleles per locus varied from 2 to 3 alleles with an average (2.62). The polymorphism information content (PIC) value ranged from 0.34 to 0.59, with a mean of 0.51. The discrimination power (Dp) value ranged between 0.67 and 0.78 with an average of 0.71 per locus and Heterozygosity (He) value varied from 0.44 to 0.67 with an average of 0.59. The genetic relationships estimated by the polymorphism of SSR markers revealed a greater level of genetic variability in wheat cultivars of wide adaptability and applicability. Whereas an average of combined probability value for the SSR markers was 6.15 x 10-16, suggests the capability of the marker system to distinguish identity and purity of wheat cultivars. In addition to the SSR markers revealed various bands that were either absent or present within tolerant cultivars (Sakha93 and Sahel1) which were altogether absent in susceptible cultivar (Gemmiza7). Also, SSRs of diagnostic and curatorial importance were discerned as ‘stand-alone’ molecular descriptors for barcoding the application of DNA sequences of standardized genetic markers for the identification of wheat cultivars. However, the genetic information in this study could provide useful information to address breeding programs and germplasm resource management.


Wheat; SSR markers; polymorphism; genetic relationships

Full Text:



Abebe, T. D. and J. Léon. 2012. Spatial and temporal genetic analyses of Ethiopian barley (Hordeum vulgare L.) landraces reveal the absence of a distinct population structure. Genetic Resources and Crop Evolution, 60: 1547-1558.

Anderson, J. A., G. A. Churchill, J. E. Autrique, S. D. Tanksley and M. E. Sorrells. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36: 181-186.

Ashraf, J., W. Malik, M. Iqbal, A. Khan, A. Qayyum, E. Noor, M. Abid, H. M. Cheema and M. Q. Ahmad. 2016. Comparative Analysis of Genetic Diversity among Bt Cotton Genotypes Using EST-SSR, ISSR and Morphological Markers. Journal of Agricultural Science and Technology, 18: 517-531.

Ateş Sönmezoğlu, Ö. and B. Terzi. 2017. Characterization of some bread wheat genotypes using molecular markers for drought tolerance. Physiology and Molecular Biology of Plants, 24: 159-166.

Bayoumi, T. Y., M. H. Eid and E. M. Metwali. 2008. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 7: 2341–2352.

Bennett, M. 1995. Nuclear DNA Amounts in Angiosperms. Annals of Botany, 76: 113-176.

Bertini, C. H. C. d. M., I. Schuster, T. Sediyama, E. G. d. Barros and M. A. Moreira. 2006. Characterization and genetic diversity analysis of cotton cultivars using microsatellites. Genetics and Molecular Biology, 29: 321-329.

Bharathi, A. 2011. Phenotypic and genotypic diversity of global Finger Millet (Eleusinecoracana (L.) Gaertn.) composite collection (Unpublished) PhD thesis, Tamil Nadu Agricultural University, Coimbatore, India. Bousba, R., M. Baum, A. Djekoune, S. Labadidi and A. Djighly. 2012. Screening for drought tolerance using molecular markers and phenotypic diversity in durum wheat genotypes. World Applied Sciences Journal, 16: 1219-1226.

Cantale, C., A. Latini, M. Sperandei, M. Iannetta, K. Ammar and P. Galeffi. 2007. Drought tolerant and susceptible wheat cultivars from field experiments to investigate the expression profile of TdDRF1 gene. Journal of Genetics and Breeding, 61: 115-120.

Cattivelli, L., P. Baldi, C. Crosatti, N. Di Fonzo, P. Faccioli, M. Grossi, A. M. Mastrangelo, N. Pecchioni and A. M. Stanca. 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48: 649-665.

Chen, G.-y. and L.-h. Li. 2007. Detection of Genetic Diversity in Synthetic Hexaploid Wheats Using Microsatellite Markers. Agricultural Sciences in China, 6: 1403-1410.

Chiaramonte, R., M. Sabbadini, F. Balordi, P. Comi and G. V. Sherbet. 2002. Allele frequency of two intragenic microsatellite loci of SEL1L gene in Northern Italian population. Molecular and cellular biochemistry, 232: 159-161.

Ciucă, M., E. Todorvska, S. Kolev, R. Nicolae, I. Guinea and N. Saulescu. 2009. Marker-assisted selection (MAS) for drought tolerance in wheat using markers associated with membrane stability. FUNDULEA, 12: 7-12.

Dellaporta, S. L., J. Wood and J. B. Hicks. 1983. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1: 19-21.

Dodig, D., M. Zorić, B. Kobiljski, G. Šurlan-Momirović and S. A. Quarrie. 2010. Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop and Pasture Science, 61: 812.

Dvořák, J. and H. B. Zhang. 1992. Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences. Theoretical and Applied Genetics, 84-84: 419-429.

El-Fadly, G. A. B., A. M. Menshawy and W. Z. E. Farhat. 2007. Molecular and biochemical studies on some bread wheat genotypes in relation to water stress tolerance. African Crop Science Conference Proceedings, 8: 605-612.

ElSayed, A. I. and M. S. Rafudeen. 2012. Molecular marker assisted for recognition drought tolerant in some of bread wheat genotypes. Journal of Crop Science and Biotechnology, 15: 17-23.

Faheem, M., T. Mahmood, G. Shabbir, N. Akhtar, A. G. Kazi and A. Mujeeb-Kazi. 2015. Assessment of D-genome Based Genetic Diversity in Drought Tolerant Wheat Germplasm. International Journal of Agriculture and Biology, 17: 791-796.

FAO. 2009. Food and Agriculture Organization. United Nations, New York, United States.

FAO. 2015. Food and Agriculture Organization. United Nations, New York, United States.

Farshadfar, E., H. Safari and A. Yaghotipoor. 2012. Chromosomal Localization of QTLs Controlling Genotype X Environment Interaction in Wheat Substitution Lines Using Nonparametric Methods. Journal of Agricultural Science, 4.

Forster, B. P., R. P. Ellis, W. T. B. Thomas, A. C. Newton, R. Tuberosa, D. This, R. A. El‐Enein, M. H. Bahri and M. Ben Salem. 2000. The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany, 51: 19-27.

Galbács, Z. S., S. Molnar, G. Halász, P. Kozma, S. Hoffmann, L. Kovacs, A. Veres, Z. S. Galli, A. Szőke and L. Heszky. 2015. Identification of grapevine cultivars using microsatellite-based DNA barcodes. VITIS-Journal of Grapevine Research, 48: 17-24.

Galiba, G. 2002. Mapping of genes regulating abiotic stress tolerance in cereals. Acta Agronomica Hungarica, 50: 235-247.

Ganal, M. W. and M. S. Röder. 2007. Microsatellite and SNP Markers in Wheat Breeding. Genomics-Assisted Crop Improvement. Springer Netherlands, p. 1-24.

Gostimsky, S. A., Z. G. Kokaeva and F. A. Konovalov. 2005. Studying plant genome variation using molecular markers. Russian Journal of Genetics, 41: 378-388.

Gupta, B. and B. Huang. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014: 1-18.

Guyomarc'h, H., P. Sourdille, G. Charmet, K. Edwards and M. Bernard. 2002. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theoretical and Applied Genetics, 104: 1164-1172.

Han, B., C. Wang, Z. Tang, Y. Ren, Y. Li, D. Zhang, Y. Dong and X. Zhao. 2015. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L.). PLOS ONE, 10: e0141540.

Huang, X. Q., H. Kempf, M. W. Ganal and M. S. Rader. 2004. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivumL.). Theoretical and Applied Genetics, 109: 933-943.

Ivandic, V., C. A. Hackett, E. Nevo, R. Keith, W. T. B. Thomas and B. P. Forster. 2002. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Molecular Biology, 48: 511-527.

Jeffreys, A. J., V. Wilson and S. L. Thein. 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314: 67-73.

Jones, D. A. 1972. Blood Samples : Probability of Discrimination. Journal of the Forensic Science Society, 12: 355-359.

Karima, K., R.-K. Malika, D. Olfa Saddoud and N. M’barek Ben. 2017. Genetic Diversity of Bread Wheat Genotypes (Triticum Aestivum L.) Revealed by Agromorphological Characteristics and Microsatellite SSR Markers. International Journal of Engineering Research, V6.

Kumar, S., V. Kumar, P. Kumari, A. K. Singh and R. Singh. 2016. DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. Journal of Environmental Biology, 37: 319-326.

Lamboy, W. F. 1998. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. Journal of the American Society for Horticultural Science, 123: 182-188.

Li, W., C.-m. Bian, Y.-m. Wei, A.-j. Liu, G.-y. Chen, Z.-e. Pu, Y.-x. Liu and Y.-l. Zheng. 2013. Evaluation of Genetic Diversity of Sichuan Common Wheat Landraces in China by SSR Markers. Journal of Integrative Agriculture, 12: 1501-1511.

Li, W., D. F. Zhang, Y. M. Wei, Z. H. Yan and Y. L. Zheng. 2006. Genetic diversity of Triticum turgidum L. based on microsatellite markers. Russian Journal of Genetics, 42: 311-316.

Liu, K. and S. V. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21: 2128-2129.

Liviero, L., E. Maestri, M. Gulli, E. Nevo and N. Marmiroli. 2002. Ecogeographic adaptation and genetic variation in wild barley, application of molecular markers targeted to environmentally regulated genes. Genetic Resources and Crop Evolution, 49: 133-144.

Maha, A., I. Sanaa, Y. M. Mabrook, Y. Amira and M. A. Gouda. 2017. Evaluation of some Egyptian bread wheat (Triticum aestivum) cultivars under salinity stress. Alexandria Science Exchange Journal, 38: 259-270.

Marcussen, T., S. R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, K. S. Jakobsen, B. B. H. Wulff, B. Steuernagel, K. F. X. Mayer and O.-A. Olsen. 2014. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345: 1250092.

Medini, M., S. Hamza, A. Rebai and M. Baum. 2005. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genetic Resources and Crop Evolution, 52: 21-31.

Merchuk-Ovnat, L., V. Barak, T. Fahima, F. Ordon, G. A. Lidzbarsky, T. Krugman and Y. Saranga. 2016. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars. Frontiers in Plant Science, 7.

Mir, R. R., M. Zaman-Allah, N. Sreenivasulu, R. Trethowan and R. K. Varshney. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125: 625-645.

Morgan, J. M. 1991. A Gene Controlling Differences in Osmoregulation in Wheat. Functional Plant Biology, 18: 249.

Morgan, J. M. and M. K. Tan. 1996. Chromosomal Location of a Wheat Osmoregulation Gene Using RFLP Analysis. Functional Plant Biology, 23: 803.

Mousa, A. M., A. E. El Absawy and K. F. Abdellatif. 2016. Morpho-Biochemical and molecular studies on wheat (Triticum aestivum L.) for drought tolerance. Minufiya Journal of Agricultural Research, 2: 419-432.

Nader, R. and M. Abdelsalam. 2014. Marker assisted-selection of major traits in Egyptian bread wheat (Triticum aestivum) and wild wheat (Aegilopsventricosa tausch). Plant Cell Biotechnology and Molecular Biology, 15: 79-86.

Nazco, R., R. J. Peña, K. Ammar, D. Villegas, J. Crossa, M. Moragues and C. Royo. 2014. Variability in glutenin subunit composition of Mediterranean durum wheat germplasm and its relationship with gluten strength. The Journal of Agricultural Science, 152: 379-393.

Nei, M. 1973. Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences, 70: 3321-3323.

Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76: 5269-5273.

Nouri, A., A. Etminan, J. A. Teixeira da Silva and R. Mohammadi. 2011. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5: 8-16.

Novoselović, D., A. R. Bentley, R. Šimek, K. Dvojković, M. E. Sorrells, N. Gosman, R. Horsnell, G. Drezner and Z. Šatović. 2016. Characterizing Croatian Wheat Germplasm Diversity and Structure in a European Context by DArT Markers. Frontiers in Plant Science, 7: 184-190.

Olufowote, J. O., Y. Xu, X. Chen, M. Goto, S. R. McCouch, W. D. Park, H. M. Beachell and R. H. Dilday. 1997. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome, 40: 370-378.

Peakall, R. and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics, 28: 2537-2539.

Peng, J. H., Y. Bai, S. D. Haley and N. L. V. Lapitan. 2008. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica, 135: 95-122.

Perez-de-Castro, M. A., S. Vilanova, J. Canizares, L. Pascual, J. M. Blanca, M. J. Diez, J. Prohens and B. Pico. 2012. Application of Genomic Tools in Plant Breeding. Current Genomics, 13: 179-195.

Phougat, D., I. S. Panwar, M. S. Punia and S. K. Sethi. 2018. Microsatellite markers based characterization in advance breeding lines and cultivars of bread wheat. Journal of Environmental Biology, 39: 339-346.

Piyusha, S. and N. K. Singh. 2018. SSR Molecular Marker are efficient tools for finding Genetic Diversity in Bread Wheat. International Journal of Current Microbiology and Applied Sciences, 12: 1098-1105.

Porebski, S., L. G. Bailey and B. R. Baum. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15: 8-15.

Prasad, M., R. K. Varshney, H. S. Balyan, P. K. Gupta and J. K. Roy. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. TAG Theoretical and Applied Genetics, 100: 584-592.

Quarrie, S. 2006. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. Journal of Experimental Botany, 57: 2627-2637.

Quarrie, S. A., A. Steed, C. Calestani, A. Semikhodskii, C. Lebreton, C. Chinoy, N. Steele, D. Pljevljakusić, E. Waterman, J. Weyen, J. Schondelmaier, D. Z. Habash, P. Farmer, L. Saker, D. T. Clarkson, A. Abugalieva, M. Yessimbekova, Y. Turuspekov, S. Abugalieva, R. Tuberosa, M. C. Sanguineti, P. A. Hollington, R. Aragués, A. Royo and D. Dodig. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 110: 865-880.

Rafalski, J. A., J. M. Vogel, M. Morgante, W. Powell, C. Andre and S. V. Tingey. 1996. Generating and Using DNA Markers in Plants. Nonmammalian Genomic Analysis. Elsevier, p. 75-134.

Rajaram, S., H.-J. Braun and M. van Ginkel. 1996. CIMMYT's approach to breed for drought tolerance. Euphytica, 92: 147-153.

Ramadugu, C., M. L. Keremane, X. Hu, D. Karp, C. T. Federici, T. Kahn, M. L. Roose and R. F. Lee. 2015. Genetic analysis of citron (Citrus medica L.) using simple sequence repeats and single nucleotide polymorphisms. Scientia Horticulturae, 195: 124-137.

Ramakishana, W., M. D. Lagu, V. S. Gupta and P. K. Ranjekar. 1994. DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theoretical and Applied Genetics, 88-88: 402-406.

Ray, D. K., N. D. Mueller, P. C. West and J. A. Foley. 2013. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE, 8: e66428.

Reynolds, M. and P. Langridge. 2016. Physiological breeding. Current Opinion in Plant Biology, 31: 162-171.

Röder, M. S., V. Korzun, K. Wendehake, J. Plaschke, M.-H. Tixier, P. Leroy and M. W. Ganal. 1998. A microsatellite map of wheat. Genetics, 149: 2007-2023.

Salem, K. F. M., A. M. El-Zanaty and R. M. Esmail. 2008. Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World Journal of Agricultural Sciences, 4: 538-544.

Shannon, C. E. and W. Weaver. 1949. The mathematical theory of communication, Urbana, IL, USA.

Sharopova, N. 2008. Plant simple sequence repeats: distribution, variation, and effects on gene expression. Genome, 51: 79-90.

Sinclair, T. R. 2012. Is transpiration efficiency a viable plant trait in breeding for crop improvement? Functional Plant Biology, 39: 359.

Smeets, H. J. M., H. G. Brunner, H.-H. Ropers and B. Wieringa. 1989. Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Human Genetics, 83: 245-251.

Smith, M. E., W. R. Coffman and T. C. Barker. 1990. Environmental effects on selection under high and low input conditions. Genotype-by-environment interaction and plant breeding. Louisiana State University Press, Baton Rouge, LA, USA, p. 261-272.

Snape, J. W., M. J. Foulkes, J. Simmonds, M. Leverington, L. J. Fish, Y. Wang and M. Ciavarrella. 2006. Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica, 154: 401-408.

Somers, D. J., P. Isaac and K. Edwards. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109: 1105-1114.

Song, Q. J., E. W. Fickus and P. B. Cregan. 2002. Characterization of trinucleotide SSR motifs in wheat. Theoretical and Applied Genetics, 104: 286-293.

Song, Q. J., J. R. Shi, S. Singh, E. W. Fickus, J. M. Costa, J. Lewis, B. S. Gill, R. Ward and P. B. Cregan. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics, 110: 550-560.

Soriano, J. M., D. Villegas, M. J. Aranzana, L. F. García del Moral and C. Royo. 2016. Genetic Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with Their Agronomic Performance. PLOS ONE, 11: e0160983.

Sourdille, P., T. Cadalen, H. Guyomarc'h, J. Snape, M. Perretant, G. Charmet, C. Boeuf, S. Bernard and M. Bernard. 2003. An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theoretical and Applied Genetics, 106: 530-538.

Tan, L.-Q., M. Peng, L.-Y. Xu, L.-Y. Wang, S.-X. Chen, Y. Zou, G.-N. Qi and H. Cheng. 2015. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genetics & Genomes, 11: 90.

Tomar, R. S. S., S. Tiwari, B. K. Naik, S. Chand, R. Deshmukh, N. Mallick, S. Singh, N. K. Singh and S. Tomar. 2016a. Molecular and morpho-agronomical characterization of root architecture at seedling and reproductive stages for drought tolerance in wheat. PloS one, 11: e0156528.

Tomar, R. S. S., S. Tiwari, Vinod, B. K. Naik, S. Chand, R. Deshmukh, N. Mallick, S. Singh, N. K. Singh and S. M. S. Tomar. 2016b. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat. PLOS ONE, 11: e0156528.

Waits, L. P., G. Luikart and P. Taberlet. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Molecular Ecology, 10: 249-256.

Wang, H. Y., Y. M. Wei, Z. H. Yan and Y. L. Zheng. 2007. EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. Journal of Applied Genetics, 48: 35-42.

Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18: 6531-6535.

Yeh, F. C. 1999. POPGENE (version 1.3. 1). Microsoft Window-Bases Freeware for Population Genetic Analysis, Alberta, Canada.

Yıldırım, A., N. Kandemir, Ö. A. Sönmezoğlu and T. E. Güleç. 2009. Transferability of Microsatellite Markers Among Cool Season Cereals. Biotechnology & Biotechnological Equipment, 23: 1299-1302.

You, F. M., N. Huo, Y. Gu, M.-c. Luo, Y. Ma, D. Hane, G. R. Lazo, J. Dvorak and O. D. Anderson. 2008. BatchPrimer3: A high throughput web application for PCR and sequencing primer design. BMC Bioinformatics, 9: 253.

Younes, Y. 2009. Polymorphism of SSR markers located on chromosome 7A, in several wheat cultivars grown in Algeria. Romanian Agricultural Research, 26: 25-28.

Zhang, L., K. Zuo, F. Zhang, Y. Cao, J. Wang, Y. Zhang, X. Sun and K. Tang. 2006. Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics, 7: 323.

Zulkifli, Y., I. Maizura and S. Rajinder. 2012. Evaluation of MPOB oil palm germplasm (Elaeis guineensis) populations using EST-SSR. Journal of Oil Palm Research, 24: 1368-1377.

Zwart, R. S., H. Muylle, E. Van Bockstaele and I. Roldán-Ruiz. 2008. Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theoretical and Applied Genetics, 117: 813-828.



  • There are currently no refbacks.

Copyright (c) 2018 Manal Eid

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Journal of Plant Breeding and Genetics
ISSN: 2305-297X (Online), 2308-121X (Print)
© EScience Press. All Rights Reserved.