A Comprehensive Review of the Synthesis and Antimicrobial Properties of Food Nanopackaging

Muniba Zahid, Momna Abbasi, Tanzila Zahid, Tayyaba Tariq, Shazia Erum, Shabana Irum, Arifa Khan, Wajeeha Hassan

Abstract


Nanotechnology is a vast field of science that plays a significant role in our daily life by providing a lot of advantages. It improves our feeding habits by preventing a lot of microbiological infections. Nanotechnology promises interesting changes for a better environment, for a better life. It provides a lot of advantages to improve health and wealth. Biosynthesis of nanoparticles is the green approach for the eco-friendly environment. It plays an important role in improving quality of products and life, for eco-friendly environment. Foodborne pathogens such as bacteria, viruses and parasites cause foodborne illness by ingesting the food contaminated by foodborne pathogens. This article reviews uses of different materials in advance field of smart nanotechnology, including bio-based packaging, improved packaging, intelligent packaging and active packaging. Silver, gold, zinc oxide, silicon dioxide are the inorganic nanoparticles which improve and extend the shelf life of fruits, vegetables and meat because of their unique properties such as oxygen exchange and retains the moisture and freshness in the food for a long period of time. It prevents the foodborne pathogens and thus providing eco-friendly packaging.

Keywords


Eco-friendly; Food packaging; Nanoparticles; Nanotechnology; Foodborne pathogens

Full Text:

PDF

References


Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar and M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4): 313-318.

Al-Nabulsi, A., T. Osaili, A. Sawalha, A. N. Olaimat, B. A. Albiss, G. Mehyar and R. Holley. 2020. Antimicrobial activity of chitosan coating containing ZnO nanoparticles against E. coli O157: H7 on the surface of white brined cheese. International Journal of Food Microbiology, 334: 108838.

Anvar, A. A., H. Ahari and M. Ataee. 2021. Antimicrobial properties of food nanopackaging: A new focus on foodborne pathogens. Frontiers in Microbiology, 12: 690706.

Arfat, Y. A., S. Benjakul, T. Prodpran, P. Sumpavapol and P. Songtipya. 2016. Physico -mechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (ZnO) nanocomposite films. Food and Bioprocess Technology, 9,: 101-112.

Auld, D. S. 2001. Zinc coordination sphere in biochemical zinc sites. Zinc biochemistry, physiology, and homeostasis: recent insights and current trends, 85-127.

Becaro, A. A., F. C. Puti, D. S. Correa, E. C. Paris, J. M. Marconcini and M. D. Ferreira. 2015. Polyethylene films containing silver nanoparticles for applications in food packaging: characterization of physico-chemical and anti-microbial properties. Journal of nanoscience and nanotechnology, 15(3): 2148-2156.

Beigmohammadi, F., S. H. Peighambardoust, J. Hesari, S. Azadmard-Damirchi, S. J. Peighambardoust and N. K. Khosrowshahi. 2016. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT-Food Science and Technology, 65: 106-111.

Bodaghi, H., Y. Mostofi, A. Oromiehie, B. Ghanbarzadeh and Z. G. Hagh. 2015. Synthesis of clay–T i O 2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. Journal of Applied Polymer Science, 132(14).

Cárdenas, G., V. J. Díaz, M. F. Meléndrez, C. C. Cruzat and A. García-Cancino. 2009. Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polymer bulletin, 62: 511-524.

Castro-Mayorga, J. L., M. J. Fabra and J. M. Lagaron. 2016. Stabilized nanosilver based antimicrobial poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innovative Food Science & Emerging Technologies, 33: 524-533.

Cimmino, S., D. Duraccio, A. Marra, M. Pezzuto, I. Romano, and C. Silvestre. 2015. Effect of compatibilisers on mechanical, barrier and antimicrobial properties of iPP/ZnO nano/microcomposites for food packaging application. Journal of Applied Packaging Research, 7(2): 6.

De Silva, R. T., P. Pasbakhsh, S. M. Lee and A. Y. Kit. 2015. ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Applied clay science, 111: 10-20.

Dhapte, V., N. Gaikwad, P. V. More, S. Banerjee, V. V. Dhapte, S. Kadam and P. K. Khanna. 2015. Transparent ZnO/polycarbonate nanocomposite for food packaging application. Nanocomposites, 1(2): 106-112.

Esmailzadeh, H., P. Sangpour, F. Shahraz, J. Hejazi and R. Khaksar. 2016. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Materials Science and Engineering: C, 58: 1058-1063.

Espitia, P. J. P., N. D. F. F. Soares, J. S. D. R. Coimbra, N. J. de Andrade, R. S. Cruz and E. A. A. Medeiros. 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 5: 1447-1464.

FDA, U. 2002. Listing of color additives exempt from certification. Code of federal regulations title 21dfood and drugs. Washington, DC: US FDA.

FDA, U. 2015. Color additive status list. United States Food and Drug Administration.

FDA, U. 2015. Environmental decision memo for food contact notification No. 1569. Biologist, regulatory team, 2.

Fu, P. P., Q. Xia, H. M. Hwang, P. C. Ray and H. Yu. 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of food and drug analysis, 22(1): 64-75.

Hakeem, M. J., J. Feng, A. Nilghaz, L. Ma, H. C. Seah, M. E. Konkel and X. Lu. 2020. Active packaging of immobilized zinc oxide nanoparticles controls Campylobacter jejuni in raw chicken meat. Applied and environmental microbiology, 86(22): e01195-20.

Holmes, J. D., D. M. Lyons and K. J. Ziegler. 2003. Supercritical fluid synthesis of metal and semiconductor nanomaterials. Chemistry–A European Journal, 9(10): 2144-2150.

Hou, X., Z. Xue, Y. Xia, Y. Qin, G. Zhang, H. Liu and K. Li. 2019. Effect of SiO2 nanoparticle on the physical and chemical properties of eco-friendly agar/sodium alginate nanocomposite film. International Journal of Biological Macromolecules, 125: 1289-1298.

Huang, Y., T. Wang, X. Zhao, X. Wang, L. Zhou, Y. Yang and Y. Ju. 2015. Poly (lactic acid)/graphene oxide–ZnO nanocomposite films with good mechanical, dynamic mechanical, anti‐UV and antibacterial properties. Journal of Chemical Technology & Biotechnology, 90(9): 1677-1684.

Jin, T., D. Sun, J. Y. Su, H. W. Zhang and H. J. Sue. 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. Journal of food science, 74(1): M46-M52.

Kalia, A., M. Kaur, A. Shami, S. K. Jawandha, M. A. Alghuthaymi, A. Thakur and K. A. Abd-Elsalam. 2021. Nettle-leaf extract derived ZnO/CuO nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit. Biomolecules, 11(2): 224.

Kim, J. S., E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee and M. H.Cho. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine, 3(1): 95-101.

Kim, S. W. and S. H. Cha. 2014. Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer‐based nanocomposites for food packaging films: Effects of nanoclay loading. Journal of Applied Polymer Science, 131(11).

Li, X., Y. Xing, Y. Jiang, Y. Ding and W. Li. 2009. Antimicrobial activities of ZnO powder‐coated PVC film to inactivate food pathogens. International journal of food science and technology, 44(11): 2161-2168.

Lima, E., R. Guerra, V. Lara and A. Guzmán. 2013. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chemistry Central Journal, 7: 1-7.

Mahdi, S., Vadood, R., & Nourdahr, R. 2012. Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature. Global Veterinaria, 9(3), 284-289.

Marra, A., C. Silvestre, D. Duraccio, D and S. Cimmino. 2016. Polylactic acid/zinc oxide biocomposite films for food packaging application. International journal of biological macromolecules, 88: 254-262.

Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10): 2346.

Pagno, C.H., Costa, T.M., de Menezes, E.W., Benvenutti, E.V., Hertz, P.F., Matte, C.R., Tosati, J.V., Monteiro, A.R., Rios, A.O. and Flôres, S.H., 2015. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 173, pp.755-762.

Rao, M. D. and P. Gautam. 2016. Synthesis and characterization of ZnO nanoflowers using C hlamydomonas reinhardtii: A green approach. Environmental Progress and Sustainable Energy, 35(4): 1020-1026.

Rashid, M. I., T. Shahzad, M. Shahid, I. M. Ismail, G. M. Shah and T. Almeelbi. 2017. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. Journal of hazardous materials, 324: 298-305.

Rukmanikrishnan, B., C. Jo, S. Choi, S. Ramalingam and J. Lee. 2020. Flexible ternary combination of gellan gum, sodium carboxymethyl cellulose, and silicon dioxide nanocomposites fabricated by quaternary ammonium silane: Rheological, thermal, and antimicrobial properties. ACS omega, 5(44): 28767-28775.

Salam, H. A., R. Sivaraj and R. Venckatesh. 2014. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Materials letters, 131: 16-18.

Savas, L. A. and M. Hancer. 2015. Montmorillonite reinforced polymer nanocomposite antibacterial film. Applied Clay Science, 10:, 40-44.

Shankar, S., X. Teng, G. Li and J. W. Rhim. 2015. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45: 264-271.

Singh, T., S. Shukla, P. Kumar, V. Wahla, V. K. Bajpai and I. A. Rather. 2017. Application of nanotechnology in food science: perception and overview. Frontiers in microbiology, 8: 1501.

Sujithra, S. and T. R. Manikkandan. 2019. Application of nanotechnology in packaging of foods: a review. International Journal of ChemTech Research, 12: 07-14.

Tabrez, S., J. Musarrat and A. A. Al-Khedhairy. 2016. Colloids and surfaces B: biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids of Surfaces B, 146: 70-83.

Thirumalai, V., A, Prabhu, D., & Soniya, M. 2010. Stable silver nanoparticle synthesizing methods and its applications. J. Bio. Sci. Res, 1, 259-270.

Thirumurugan, A., S. Ramachandran and A. Shiamala Gowri. 2013. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. International Food Research Journal, 20(4).

Umamaheswari, G., S. Sanuja, V. A. John, S. V. Kanth and M. J. Umapathy. 2015. Preparation, characterization and anti-bacterial activity of zinc oxide-gelatin nanocomposite film for food packaging applications. Polymers and Polymer Composites, 23(3): 199-204.

Vitor, G., T. C Palma, B. Vieira, J. P. Lourenço, R. J. Barros and M. C. Costa. 2015. Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Minerals Engineering, 75: 85-93.

Wu, H., J. J. Yin, W. G. Wamer, M. Zeng and Y. M. Lo. 2014. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Journal of Food and Drug Analysis, 22(1): 86-94.

Yadav, S., G. K. Mehrotra and P. K. Dutta. 2021. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry, 334: 127605.

Yin, I. X., J. Zhang, I. S. Zhao, M. L. Mei, Q. Li and C. H. Chu. 2020. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International journal of nanomedicine, 2555-2562.

Yuvakkumar, R., J. Suresh, A. J. Nathanael, M. Sundrarajan and S. I. Hong. 2014. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C, 41:17-27.

Zawrah, M. F., S. A. El-Moez and D. Center. 2011. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Science Journal, 8(4): 37-44.

Zhu, Y., D. Li, T. Belwal, L. Li, H. Chen, T. Xu and Z. Luo. 2019. Effect of nano-SiOx/chitosan complex coating on the physicochemical characteristics and preservation performance of green tomato. Molecules, 24(24): 4552.




DOI: https://doi.org/10.33687/planthealth.01.01.4535

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.