Morpho-Molecular Characterization of Trichoderma Isolates from Rhizospheric Soils of Vegetables in Pakistan

Shomaila Iqbal, Muhammad Ashfaq, Aamir H. Malik, Muhammad Inam -ul-Haq, Khalid S. Khan

Abstract


Trichoderma, a major fungal genus attaining importance due to its diverse application in biological control programs and is considered a substitute for chemical pesticides. This research was conducted to characterize various Trichoderma species isolated from rhizospheric soil samples morphologically followed by its confirmation using molecular tools. A systematic survey of Trichoderma populations associated with soils of different vegetable hosts would enable a clear picture of the distribution of species in the region. Samples were collected from the rhizospheres of a variety of vegetable hosts and obtained numerous Trichoderma isolates (T. harzianum, T. viride, T. hamatum, T. longibrachiatum, T. asperellum, T. koningii and T. longipile). Morphological characteristics revealed that T. harzianum resembles T. viride but is more pigmented with confined rings than T. viride and other associated species. T. viride sporulation was more rapid than other species, producing a soft mat on PDA media. T. viride produces a sweet smell of coconut; T. asperellum produces a misty odour while T. longibrachiatum produces a yellow pigmentation in the media. Fifty out of 200 morphologically identified species were genetically characterized using universal primers (ITS-1 and ITS-4). ITS-based sequencing resulted in a product of 650 bp in all the isolates. The sequencing of these isolates showed five different species. As per rDNA, the species identified are: T. harzianum, T. hamatum, T. longibrachiatum, T. asperellum and T. viride with 98-100% sequence similarities to other related Trichoderma isolates reported from China, India, Mexico, USA, Portugal, Germany, Spain and Brazil. Bioinformatics analysis was conducted using maximum parsimony (MP) that supports the resemblance of the present study Trichoderma species with species reported from other countries. It is concluded that Trichoderma strains with biocontrol activity are genetically different compared to the pathogenic ones. The findings of this study help in providing an opportunity to test these isolates against different plant pathogens and ultimately leads to the development of bio-pesticides that could be eco-friendly and cost-effective with no chance of resistance development


Keywords


Trichoderma, ITS, PCR, Morphology, Characterization

References


Andrade-Hoyos, P., A. Luna-Cruz, E. Osorio-Hernández, E. Molina-Gayosso, N. Landero-Valenzuela and H. J. Barrales-Cureño. 2019. Antagonismo de Trichoderma spp. vs hongos asociados a la marchitez de chile. Revista mexicana de ciencias agrícolas, 10: 1259-72. https://doi.org/10.29312/remexca.v10i6.1326

Banday, S., A. H. Bhat, N. A. Khan and E. Shahnaz. 2022. Morphological characterization and biological management of Gloeosporium ampelophagum (Pass.) Sacc causing anthracnose of grapes in India. International Journal of Phytopathology, 11: 181-94.

Błaszczyk, L., D. Popiel, J. Chełkowski, G. Koczyk, G. J. Samuels, K. Sobieralski and M. Siwulski. 2011. Species diversity of Trichoderma in Poland. Journal of applied genetics, 52: 233-43. https://doi.org/10.1007/s13353-011-0039-z

Bourguignon, E. L. 2008. Ecology and diversity of indigenous Trichoderma species in vegetable cropping systems, Lincoln University.

Castle, A., D. Speranzini, N. Rghei, G. Alm, D. Rinker and J. Bissett. 1998. Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Applied and Environmental Microbiology, 64: 133-37. https://doi.org/10.1128/AEM.64.1.133-137.1998

Chaverri, P., F. Branco-Rocha, W. Jaklitsch, R. Gazis, T. Degenkolb and G. J. Samuels. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 107: 558-90. https://doi.org/10.3852/14-147

Chaverri, P., L. A. Castlebury, B. E. Overton and G. J. Samuels. 2003. Hypocrea/Trichoderma: Species with conidiophore elongations and green conidia. Mycologia, 95: 1100-40. https://doi.org/10.1080/15572536.2004.11833023

Chen, L.-L., L.-J. Liu, M. Shi, X.-Y. Song, C.-Y. Zheng, X.-L. Chen and Y.-Z. Zhang. 2009. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS microbiology letters, 299: 135-42. https://doi.org/10.1111/j.1574-6968.2009.01746.x

Du Plessis, I. L., I. S. Druzhinina, L. Atanasova, O. Yarden and K. Jacobs. 2018. The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia, 110: 559-83. https://doi.org/10.1080/00275514.2018.1463059

Faizova, V. and A. Perepelkina. 2015. Species composition of soil biota in agrocenoses winter wheat Central Caucasus. Social and economic innovations: trends, forecasts and perspectives.

Faraz, A., I. U. Haq, S. Ijaz, S. T. Sahi and I. Khan. 2022. Antimycotic potential assessment of Trichoderma species and fungicides for sustainable management of Sclerotinia trifoliorum causing stem and crown rot of Trifolium alexandrinum L. International Journal of Phytopathology, 11: 195-205.

Gupta, A., M. Gopal, G. V. Thomas, V. Manikandan, J. Gajewski, G. Thomas, S. Seshagiri, S. C. Schuster, P. Rajesh and R. Gupta. 2014. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One, 9: e104259. https://doi.org/10.1371/journal.pone.0104259

Harman, G., C. Howell, A. Viterbo, I. Chet and M. Lorito. 2004. Trichoderma spesies-opportunictic, avirulant plant symbionts. Nature reviews microbiology, 2: 43-56. https://doi.org/10.1038/nrmicro797

Harman, G. E. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease, 84: 377-93. https://doi.org/10.1094/PDIS.2000.84.4.377

Harman, G. E., M. A. Obregón, G. J. Samuels and M. Lorito. 2010. Changing models for commercialization and implementation of biocontrol in the developing and the developed world. Plant Disease, 94: 928-39. https://doi.org/10.1094/PDIS-94-8-0928

Hatvani, L., M. Homa, K. Chenthamara, F. Cai, S. Kocsubé, L. Atanasova, E. Mlinaric-Missoni, P. Manikandan, R. Revathi and I. Dóczi. 2019. Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma: A successful, common phylotype of Trichoderma longibrachiatum in the frontline. FEMS microbiology letters, 366: 246. https://doi.org/10.1093/femsle/fnz246

Hermosa, M., E. Keck, I. Chamorro, M. Rubio, L. Sanz, J. Vizcaíno, I. Grondona and E. Monte. 2004. Genetic variability shown by a collection of biocontrol isolates of Trichoderma. Mycological research, 108: 897-906. https://doi.org/10.1017/S0953756204000358

Heydari, A. and M. Pessarakli. 2010. A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10: 273-90. https://doi.org/10.3923/jbs.2010.273.290

Jang, S., S. L. Kwon, H. Lee, Y. Jang, M. S. Park, Y. W. Lim, C. Kim and J.-J. Kim. 2018. New report of three unrecorded species in Trichoderma harzianum species complex in Korea. Mycobiology, 46: 177-84. https://doi.org/10.1080/12298093.2018.1497792

Jeger, M. J., P. Jeffries, Y. Elad and X.-M. Xu. 2009. A generic theoretical model for biological control of foliar plant diseases. Journal of Theoretical Biology, 256: 201-14. https://doi.org/10.1016/j.jtbi.2008.09.036

Jukes, T. H. and C. R. Cantor. 1969. Evolution of Protein Molecules. In, Mammalian protein metabolism. Academic Press. New York, USA. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7

Kubicek, C. and M. Penttila. 1998. Regulation of production of plant polysaccharide degrading. Trichoderma And Gliocladium, Volume 2: Enzymes, Biological Control and commercial applications, 2: 49.

Kubicek, C. P., J. Bissett, I. Druzhinina, C. Kullnig-Gradinger and G. Szakacs. 2003. Genetic and metabolic diversity of Trichoderma: A case study on South-East Asian isolates. Fungal genetics and biology, 38: 310-19. https://doi.org/10.1016/S1087-1845(02)00583-2

Küçük, Ç. and M. Kivanç. 2004. In vitro antifungal activity of strains of Trichoderma harzianum. Turkish Journal of Biology, 28: 111-15.

Kumar, A. and J. Gupta. 1999. Variation in enzyme activity of tubeconazole tolerant biotypes of Trichoderma viride. Indian Phytopathology, 52: 263-66.

Kumar, S., S. Raj, A. Sharma and H. Varma. 2012. Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Scientia Horticulturae, 134: 40-45. https://doi.org/10.1016/j.scienta.2011.10.019

Mazrou, Y. S., A. H. Makhlouf, M. M. Elseehy, M. F. Awad and M. M. Hassan. 2020. Antagonistic activity and molecular characterization of biological control agent Trichoderma harzianum from Saudi Arabia. Egyptian Journal of Biological Pest Control, 30: 1-8. https://doi.org/10.1186/s41938-020-0207-8

Mukhopadhyay, R. and D. Kumar. 2020. Trichoderma: A beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control, 30: 1-8. https://doi.org/10.1186/s41938-020-00333-x

Muthumeenakshi, S., P. Mills, A. E. Brownd and D. Seaby. 1994. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology, 140: 769-77. https://doi.org/10.1099/00221287-140-4-769

Muthumeenakshi, S. and P. R. Mills. 1995. Detection and differentiation of fungal pathogens of Agaricus bisporus. Mushroom Science, 14: 603-10.

Nawaz, K., A. A. Shahid, L. Bengyella, M. N. Subhani, M. Ali, W. Anwar, S. Iftikhar and S. W. Ali. 2018. Diversity of Trichoderma species in chili rhizosphere that promote vigor and antagonism against virulent Phytophthora capsici. Scientia Horticulturae, 239: 242-52. https://doi.org/10.1016/j.scienta.2018.05.048

Oskiera, M., M. Szczech and G. Bartoszewski. 2015. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. Journal of Horticultural Research, 23: 75-86. https://doi.org/10.2478/johr-2015-0010

Ospina-Giraldo, M., D. Royse, X. Chen and C. Romaine. 1999. Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other biotypes of Trichoderma spp. associated with mushroom green mold. Phytopathology, 89: 308-13. https://doi.org/10.1094/PHYTO.1999.89.4.308

Rahman, A., M. F. Begum, M. Rahman, M. Bari, G. Illias and M. F. Alam. 2011. Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste. Turkish Journal of Biology, 35: 183-94. https://doi.org/10.3906/biy-0905-8

Rivera-Méndez, W., J. Brenes-Madriz and C. Zúñiga-Vega. 2018. Efectos de la aplicación de Trichoderma asperellum y su filtrado en el crecimiento de almácigos de cebolla (Allium cepa). Revista Tecnología en Marcha, 31: 98-105. https://doi.org/10.18845/tm.v31i2.3627

Sambrook, J., E. Fritsch and T. Maniatis. 1989. A Laboratory Manual: Molecular Cloning. Cold Spring Harbor Laboratory Press: New York, USA.

Samson, D., I. A. Apperly, J. J. Braithwaite, B. J. Andrews and S. E. Bodley Scott. 2010. Seeing it their way: Evidence for rapid and involuntary computation of what other people see. Journal of Experimental Psychology: Human Perception and Performance, 36: 1255-66. https://doi.org/10.1037/a0018729

Samuels, G. 1996. Trichoderma una revisión de la biología y sistemática del género. Mycological research, 100: 923-35. https://doi.org/10.1016/S0953-7562(96)80043-8

Samuels, G., S. Dodd, W. Gams, L. Castlebury and O. Petrini. 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94: 146-70. https://doi.org/10.1080/15572536.2003.11833257

Sanger, F., S. Nicklen and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. proceedings of the national academy of sciences, 74: 5463-67. https://doi.org/10.1073/pnas.74.12.5463

Sarwar, M. 2015. The killer chemicals as controller of agriculture insect pests: The conventional insecticides. International Journal of Chemical and Biomolecular Science, 1: 141-47.

Seaby, D. 1996. Differentiation of Trichoderma taxa associated with mushroom production. Plant pathology, 45: 905-12. https://doi.org/10.1111/j.1365-3059.1996.tb02901.x

Shah, S., S. Nasreen and P. Sheikh. 2012. Cultural and morphological characterization of Trichoderma spp. associated with green mold disease of Pleurotus spp. in Kashmir. Research Journal of Microbiology, 7: 139. https://doi.org/10.3923/jm.2012.139.144

Sharma, K. and U. Singh. 2014. Cultural and morphological characterization of rhizospheric isolates of fungal antagonist Trichoderma. Journal of Applied and Natural Science, 6: 451-56. https://doi.org/10.31018/jans.v6i2.481

Sivasithamparam, K. and E. Ghisalberti. 1998. Secondary metabolism in Trichoderma and Gliocladium. In, Trichoderma and Gliocladium. Francis and Taylor Ltd. London.

Skouboe, P., J. C. Frisvad, J. W. Taylor, D. Lauritsen, M. Boysen and L. Rossen. 1999. Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological research, 103: 873-81. https://doi.org/10.1017/S0953756298007904

Sood, M., D. Kapoor, V. Kumar, M. S. Sheteiwy, M. Ramakrishnan, M. Landi, F. Araniti and A. Sharma. 2020. Trichoderma: The "secrets" of a multitalented biocontrol agent. Plants, 9: 762. https://doi.org/10.3390/plants9060762

Srivastava, M., S. Mohammad, P. Sonika, K. Vipul, S. Anuradha, T. Shubha and Y. Srivastava. 2015. Trichoderma: A scientific approach against soil borne pathogens. African Journal of Microbiology Research, 9: 2377-84. https://doi.org/10.5897/AJMR2015.7788

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30: 2725-29. https://doi.org/10.1093/molbev/mst197

Taylor, J. W., D. J. Jacobson, S. Kroken, T. Kasuga, D. M. Geiser, D. S. Hibbett and M. C. Fisher. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal genetics and biology, 31: 21-32. https://doi.org/10.1006/fgbi.2000.1228

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18: 315-22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1


Full Text: PDF

DOI: 10.33687/phytopath.011.03.4309

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Shomaila Iqbal, Muhammad Ashfaq, Aamir Humayun Malik, Muhammad Inam -ul-Haq, Khalid Saifullah Khan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.