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Rice blast disease (RBD) is mostly controlled by fungicides by the farmers of central 
Punjab, Pakistan. However, the use of fungicides by the farmers is excessive and ill-
advised, resulting in the emergence of new resistant strains of Pyricularia oryzae. The ill-
advised employment of fungicides can be timed exploring the role of environmental 
factors favorable for this disease. The objective of current study was to determine the 
most favorable weather conditions for RBD in central Punjab, Pakistan, where this crop is 
mostly cultivated. Environmental factors including maximum and minimum 
temperatures (max and min temp), rainfall (Rf), relative humidity (Rh) and wind speed 
(Ws) conducive for RBD were characterized during this study. For this purpose, eight 
years (2009-2016) RBD severity data of susceptible to highly susceptible genotypes 
together with environmental data (max and min temp, Rf, Rh and Ws) was collected from 
Kala Shah Kako (KSK), Rice Research Institute (RRI), Punjab, Pakistan. The genotypes 
were cultivated for eight years in randomized complete block design (RCBD), and data 
was kept on recording during the months of high disease pressure. Data was collected 
after a ten days interval using disease scoring scale developed by International Rice 
Research Institute (IRRI) during 1996. Simple linear regression models were used to 
determine the relationship of environmental factors with RBD severity. The variation in 
RBD severity due to environmental factors was determined using the coefficient of 
determination (R2). In the present study, the relationship of max temp, Rf, Rh and Ws 
with RBD severity was positive, significant and linear, however, the relationship of min 
temp with RBD severity was negative. Max temp 40-42°C, min temp 21-23°C, Rf 2-3mm, 
Rh 50-70% and Ws 9-11 Km/h were found to be most favorable environmental 
conditions for RBD severity. The current research disclosed the significant role of all five 
environmental factors in the spread of RBD. Thus, future predictive models could be 
established using these five environmental factors for more accurate prediction of this 
disease in rice belt of Punjab, Pakistan, to time the application of fungicides. 
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INTRODUCTION 

Rice (Oryza sativa) is the main kharif crop of Pakistan. It 

is the second staple food of Pakistani people, and also 

the second major exportable commodity of Pakistan. In 
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Pakistan, its contribution to GDP is 0.6 percent, while it 

contributes 3.1 percent in value addition of agriculture 

(GoP, 2022).  Rice crop is affected by different diseases 

which cause enormous losses worldwide. Rice blast 

disease (RBD) caused by Pyricularia oryzae is one of the 

most threatening diseases of rice crop. This disease may 

cause heavy yield losses in rice and even under severe 

conditions complete failure of crop has also been 

reported (Xiao et al., 2020). This disease is causing about 

15% yield losses in China every year (Feng et al., 2022). 

Decrease in rice yield due to RBD is the alarming threat 

for world food security, because this crop is fulfilling the 

calories requirements of most parts of the world. Hence, 

the control of RBD is vital to ensure world food security. 

Different management approaches are being used to 

control this disease effectively, still there is need to 

develop further many strategies to control new virulent 

races of this pathogenic fungus (Simkhada and Thapa, 

2022). The main reason for emergence of new races is 

the imprudent use of fungicides which can be made 

judicious with the knowledge of epidemiology of this 

disease. 

The occurrence, development and spread of RBD 

depends greatly on the environmental factors that 

include maximum and minimum temperatures (max and 

min temp), relative humidity (Rh), rainfall (Rf) and wind 

speed (Ws) (Shahriar et al., 2020; Ahmad et al., 2022). In 

both tropical and sub-tropical regions, the fungal 

mycelia can survive on plant residues for more than one 

season. Temperature ranging from 18 to 20oC favors the 

survival of mycelia on rice straws for more than three 

years and high moisture conditions lead to development 

of conidia. The availability of favorable environment 

including Rh and strong winds allow the spread of 

conidia up to 230 meters (Agbowuro et al., 2020). These 

airborne conidia can survive the whole year and are 

responsible for severe epidemics (Raveloson et al., 

2018). Spore growth and development of lesions is 

favoured by wetness of leaves, 92-96% Rh and 25-28oC 

air temperature (Kankanala et al., 2007; Agbowuro et al., 

2020). The severity of RBD is always high during mild 

daytime temperature with regular and long duration of 

dew drops (Liu et al., 2004). 

Sporulation of the pathogen of RBD is favored by 

increased periods of leaf dampness due to deposition of 

dew and temperatures ranging from 17 to 23oC 

(Katsantonis et al., 2017), as water is necessary for the 

discharge of conidia, and furthermore water on the leaf 

surface favors their discharge at high rate. Research 

showed that blast lesions on seedlings developed at the 

temperature ranging from 25 to 30oC but were unable to 

develop at 15-20oC (Manandhar et al., 1998). Thus, 

development of blast lesions in rice seedlings is highly 

dependent on temperature conditions (Katsantonis et 

al., 2017). It is observed that incidence of RBD is 

correlated positively with Rh and Rf, and negatively with 

temperature, this means that disease incidence increases 

when Rf and Rh increase and it decreases when 

temperature increases above the favorable limits 

(Shafaullah et al., 2011). So, it is evident that 

epidemiological factors play a crucial role in the 

development of RBD. But research is still lacking in this 

regard, as the pathogen is continuously evolving, and 

climate change is causing changes in environmental 

factors (Lee et al., 2022). Thus, comprehensive new 

research is required to explore the effect of 

environmental conditions on the RBD development, 

overwintering and spread. This will help to find out the 

novel domains of environmental impact on RBD and will 

be beneficial in developing a disease predictive model 

for RBD. The following study was aimed at to 

characterize the most favorable weather conditions 

(max and min temps, Rf, Rh and Ws) for RBD to develop 

future decision support system for forecasting RBD and 

accordingly timing the application of fungicides in 

central Punjab, Pakistan. This will help curtailing the 

number of fungicides applications and subsequently 

conserving environment and avoiding the emergence of 

new resistant strains of P. oryzae in this region of 

Punjab, Pakistan. 

 

MATERIALS AND METHODS 

To study the epidemiology of RBD, the historical RBD 

severity data from 2009 to 2016 was collected from Kala 

Shah Kako (KSK), Rice Research Institute (RRI), central 

Punjab, Pakistan (74.2677° E, 31.7250° N and 204 m 

above sea level). This data was recorded on susceptible 

to highly susceptible varieties. The varieties were 

cultivated for eight years in randomized complete block 

design (RCBD) in a plot of 2×10 meter. Three repeats 

were maintained in RCBD during the period of eight 

years (2009-2016). Each variety was being sown in 

three- meter row length during the period of eight years. 

The distance between the two plants and two rows were 

maintained at 9 inches, respectively. The soil of research 

trials was sandy-clay-loam and was being used 
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previously for screening trials of rice genotypes against 

RBD; hence, being served as sick plot during eight years 

research period. Further, the soil had 19% silt, 25% clay, 

26% sand, 5% free lime, TSS 30.9 mmol/L, pH 7.39 and 

EC 3.08 dsm-1. Fertilizers in the research plots were 

applied on recommended rates, while recommended 

agronomic practices were performed to maintain the 

good soil conditions (Sarwar et al., 2022). Weeds from 

the research area were being removed manually using 

labour. For the infection of RBD, artificial and natural 

inoculum were relied upon. The detail of culture 

preparation of RBD has already been described in detail 

in our recently published paper (Saneela et al., 2022). 

For artificial inoculation, spore suspension of 106 

spores/mL was measured using hemocytometer from 

the prepared culture of P. oryzae and sprayed twice a 

day (morning and evening) on the research trials unless 

clear symptoms of RBD appeared on the varieties. The 

RBD severity data was recorded for two months (August 

to September 2009-2016) after ten days interval using 

zero to nine scoring scale (IRRI, 1996; Table 1). The 

reason for recording RBD severity in these two months 

was that in previous extension surveys disease was 

reported high during these two months.

 

Table 1. Disease scoring scale for RBD. 

Grade/Rating Disease Intensity/Severity 

0 Zero Lesion 

1 Pinpoint size brown specks or bigger brown spots containing no spores 

2 Round, small, 1-2mm gray spots having brown margins. These spots are more evident on the leaves 

present on lower side of the plant 

3 Number of lesions (same as in grading 2) on leaves present on upper side of the plant 

4 Three-mm or even longer characteristic blast lesions covering <4% leaf area 

5 Three-mm or even longer characteristic blast lesions covering 4-10% leaf area 

6 Three-mm or even longer characteristic blast lesions covering 11-25% leaf area 

7 Three-mm or even longer characteristic blast lesions covering 26-50% leaf area 

8 Three-mm or even longer characteristic blast lesions covering 51-75% leaf area 

9 Three-mm or even longer characteristic blast lesions covering >75% leaf area of infected plant 

 

Statistical analysis 

The weather data of max and min temps (°C), Rh (%), Rf 

(mm) and Ws (km/h) of the years 2009-2016 was 

collected from the weather observatory, RRI, KSK. The 

effect of each weather parameter (max and min temps, 

Rh, Rf and Ws) on RBD severity was determined by 

plotting scatter graphs and using simple linear 

regression analysis (Steel et al., 1997). In regression 

analysis, RBD severity served as dependent variable 

while weather parameters served as independent 

variable. Coefficient of determination (R2) was used to 

determine the variability in RBD severity due to 

environmental factors (Chattefuee and Hadi, 2006). 

 

RESULTS 

There was a positive and linear relationship between max 

temp and RBD severity during all eight years (Figure 1). 

Linear regression models showed an average 86% 

variability in RBD severity as a result of max temp (Figure 

1). The average eight years scatter plot showed maximum 

RBD severity at the max temp of 40-42°C. Min temp 

exhibited negative and linear relationship with RBD 

severity during eight years (Figure 2). Linear regression 

models explained an average 67% variability in RBD 

severity as a result of min temp (Figure 2). The average 

eight years scatter plot of min temp showed that RBD 

severity was maximum at the min temp of 21-23°C. The 

relationship of Rf with RBD severity was also positive and 

linear. The average eight years scatter plot of Rf showed 

maximum RBD severity at 2-3 mm Rf. Linear regression 

models explained average 75% variability in RBD severity 

as a result of Rf (Figure 3). The relationship of Rh with 

RBD severity during the period of eight years was also 

positive and linear. Linear regression models explained 

average 78% variability as a result of Rh (Figure 4). The 

average eight years scatter plot of Rh showed maximum 

RBD severity at 50-70% Rh. Similarly, the relationship of 

Ws with RBD severity was also positive and linear. Linear 

regression models explained an average 87% variability 

in RBD severity as a result of Ws (Figure 5). The average 

eight years scatter plot of Ws showed maximum RBD 

severity at the Ws of 9-11 Km/h (Figure 5). 
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Figure 1. Relationship of max temp (°C) with RBD severity during 2009-2016. 
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Figure 2. Relationship of min temp (°C) with RBD severity during 2009-2016. 
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Figure 3. Relationship of Rf (mm) with RBD severity during 2009-2016. 
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Figure 4. Relationship of Rh (%) with RBD severity during 2009-2016. 
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Figure 5. Relationship of Ws (km/h) with RBD severity during 2009-2016. 
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DISCUSSION 

The current study revealed that all five environmental 

factors, viz., max and min temps, Rf, Rh and Ws 

significantly affected RBD severity. It was observed that 

fluctuation in environmental factors also significantly 

changed RBD during the period of eight years. These 

findings are in line with Katsantonis et al. (2017). 

Weekly max temp had a significant effect on the RBD 

severity during all eight years (2009-2016). The 

relationship of max temp with RBD severity was linear 

and positive which means RBD severity increased with 

the increasing max temp. In our study, the max temp in 

the range of 40-42°C was found conducive for RBD 

severity. In the present study, min temp also 

significantly affected RBD, however, its effect was 

negative and RBD severity decreased with the increasing 

min temp. The negative relationship of min temp has 

also been reported by Shafaullah et al. (2011). They also 

reported the main temp ranges 20-22°C favorable for 

RBD. The significant effect of temperature on RBD may 

be due to different reasons. For example, temperature 

has a significant role in the survival of conidia. It has 

been observed that change in temperature ranges 

significantly affect survival of the conidia (Greer and 

Webster, 2001). In present study, the conducive ranges 

of min temp we found for RBD are not in agreement with 

the Rajput et al. (2017). They concluded in their study 

that temperature 22-32°C were conducive for RBD. This 

may be due to the reason that the area in which they 

conducted the trial might have a different climate. The 

second reason may be the virulence behavior of the 

pathogen present in that research area where the 

experiment was conducted. The temperature has also 

significant role in the sporulation and lesion 

development of P. oryzae. The infection model explains 

that with change in each degree of temperature (average 

temperature), lesion development and sporulation 

change 0.20 units (Rajput et al., 2017). In our study, RBD 

severity increased with increasing max temp which is in 

agreement with Rajput et al. (2017). They reported that 

with the increase of max temp lesion development also 

increases owing to increase in sporulation. In our study, 

the role of Rf was also significant and linear. This is in 

line with Refaei (1977). In our research, the maximum 

RBD severity was observed at weekly average Rf of 2-3 

mm. Similar findings have been reported by Katsantonis 

et al. (2017). The significant role of Rf in the spread of 

RBD may be due to its role in conidial discharge. It has 

been reported that more water on the surface of leaves 

favours the discharge of conidia (Manandhar et al., 

1998). In our study, Rf caused variability in RBD severity 

near 80%. This is in line with Kim et al. (2017). The role 

of Rh in our study was also significant and linear and 

caused variability in RBD severity up to 70%. This is in 

agreement with Liu et al. (2021). In their study, the 

variability in RBD due to Rh was 60% which is almost 

close to our findings. Rh has also been found significant 

in the prediction models for blast disease (Donatelli et 

al., 2017). Our findings also correlate with the findings of 

Donatelli et al. (2017) that with the increase of Rh blast 

severity also increases. It has been reported that RBD 

does not appear on susceptible cultivars unless suitable 

Rh prevails (Kim and Jung, 2020). In our findings, the 

role of Ws was also significant and linear for RBD. Our 

findings are in agreement with several researchers 

(Ashizawa et al., 2005; Pandit et al., 2023). Ws 

significantly affects the temporal dynamics of RBD 

(Katsantonis et al., 2017). The significant role of Ws on 

RBD severity may be due to its role in dispersal and 

deposition of conidia (Katsantonis et al., 2017). Ws also 

plays key role in liberation of conidia from conidiophore. 

Conidium production and concentration in the air also 

depend on Ws (Koizumi and Kato, 1991). 

 

CONCLUSION 

The current research disclosed the significant role of all 

five environmental factors in the spread of RBD. Thus, 

future predictive models could be established using 

these five environmental factors for more accurate 

prediction of this disease in rice belt of Punjab, Pakistan. 
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