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Rice is a vital staple food globally, but it is susceptible to a wide range of diseases. 
Early detection of leaf-related diseases is essential for ensuring its sustainability. 
Traditional disease identification methods often rely on manual techniques, which 
are time-consuming, labor-intensive, and inefficient. This study proposes a more 
efficient approach for detecting rice diseases using a customized VGG16 
convolutional neural network (CNN), addressing these limitations. The proposed 
model, which includes 14 convolutional layers and a depth of 512 layers, 
demonstrates enhanced classification effectiveness. A dataset consisting of 3,611 
custom-generated images, along with benchmark datasets, was used for evaluation. 
The model’s performance was assessed using five CNN-based algorithms: 
DenseNet121, Inception V3, ResNet50, VGG16, and a personalized VGG model. The 
proposed model achieved an accuracy of 96% on new data samples, outperforming 
current state-of-the-art models. These results highlight the proposed method’s 
superior effectiveness in identifying rice diseases in real-world scenarios. 
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INTRODUCTION 
Rice is a staple food sustaining billions of people 

worldwide (Hasan et al., 2023). It plays a pivotal role in 

ensuring food security (Gogoi et al., 2023) and 

maintaining economic stability, particularly in Asia, 

where it serves as both a primary dietary component 

and a major source of employment (Chen et al., 2021). 

However, rice cultivation faces several challenges, 

including diseases such as bacterial leaf blight, sheath 

blight, brown spot, and leaf blast. These diseases, 

primarily caused by fungi, bacteria, and viruses, can 

spread rapidly, leading to significant yield losses, 

reduced grain quality, and economic hardship for 

farmers (Prajapati et al., 2017). In developing countries, 

where agriculture constitutes a crucial part of the 

economy, these rice diseases pose a severe threat to food 

security (Krishnamoorthy et al., 2021). 

Traditional methods of disease detection, such as 

manual field inspections or the use of specialized 

equipment, are often time-consuming, labor-intensive, 

and require expert knowledge. These limitations make 

them inefficient for large-scale agricultural practices 

(Hajjar et al., 2023). Moreover, reliance on human 

expertise can result in inconsistent outcomes due to 

variations in skill levels and environmental conditions 

(Saleem et al., 2019). To address these challenges, there 
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is an urgent need to develop innovative, scalable, and 

efficient solutions for timely and accurate disease 

detection to minimize crop losses and sustain 

agricultural productivity (Wang et al., 2021). 

The integration of artificial intelligence (AI) and deep 

learning (DL) techniques has revolutionized plant 

disease detection (Trivelli et al., 2019). In particular, 

Convolutional Neural Networks (CNNs) have proven to 

be highly effective in analyzing plant leaf images for 

disease identification and classification. CNNs offer 

numerous advantages over traditional methods, 

including high accuracy, automation, and the ability to 

process large datasets efficiently (Lu et al., 2017). 

Despite these advancements, current models still face 

challenges such as overfitting, limited generalization to 

unseen data, and inefficiencies in extracting features 

from complex datasets. Addressing these issues is 

critical for the development of robust, scalable, and 

reliable disease detection systems. 

In the present study, a novel approach for detecting rice 

diseases is proposed using a customized VGG16 CNN 

architecture (Theckedath and Sedamkar, 2020). To 

enhance feature extraction capabilities (Yogeshwari and 

Thailambal, 2023) and improve classification 

performance, the VGG16 model was upgraded with 14 

convolutional layers, each with a depth of 512. Advanced 

data augmentation techniques, such as rotation and 

blurring, were applied to optimize the ability of the 

models to generalize to unseen data (Shorten and 

Khoshgoftaar, 2019). For robust evaluation and 

validation, an extensive dataset comprising 3,611 

custom-generated and benchmark images of rice 

diseases was developed. 

 

RELATED WORK 

Farmers face daily challenges in agriculture, including 

the detection of crop diseases. This study reviews 

various research efforts on disease detection in rice 

using advanced techniques, focusing on deep learning 

models, pre-processing methods, and image analysis. 

Ritharson et al. (2024) proposed using deep learning 

for rice leaf disease classification. They developed a 

dataset of 5932 custom rice leaf images categorized 

into nine disease classes. Models like ResNet50, 

DenseNet121, and InceptionV3 were evaluated, 

showcasing effective performance. Ahad et al. (2023) 

explored six CNN-based models (DenseNet121, 

MobileNetV2, ResNet152V, and others) for identifying 

nine rice diseases in Bangladesh. Their ensemble model 

achieved the highest accuracy, highlighting the 

potential of CNN for real-time agricultural applications. 

Tyagi et al. (2023) introduced a two-stage process with 

CLAHE for image pre-processing and hybrid 

segmentation (HSV and K-means). They integrated the 

model into an Android app for user-friendly rice 

disease diagnosis. Gogoi et al. (2023) utilized a transfer 

learning-based three-stage CNN with PReLU and 

progressive resizing to enhance model accuracy while 

minimizing training data needs. The approach was 

validated on a dataset of 8883 images. 

Hasan et al. (2023) used k-means clustering to isolate 

affected areas in rice leaf images, identifying diseases 

like bacterial blight and leaf smut. Their model, trained 

on 2700 images, demonstrated real-world applicability 

via mobile integration. Velusamy et al. (2023) 

emphasized segmentation, augmentation, and feature 

engineering, achieving 3.1% improvement in 

classification accuracy (90.63%). Zhou et al. (2023) 

combined Faster R-CNN and FCM-KM for disease 

detection, achieving robust results after extensive 

training on 3010 images. Stephen et al. (2023) used 

ResNet architectures with self-attention mechanisms to 

enhance feature selection, achieving high multiclass 

classification accuracy. Bari et al. (2021) applied Faster 

R-CNN to detect healthy and diseased rice leaves (e.g., 

Hispa and brown spot) using Kaggle and custom 

datasets, leveraging the Caffe DL technique for training. 

This review highlights the potential of deep learning, 

particularly enhanced VGG models, to improve disease 

classification accuracy and reliability. These approaches 

can be widely adopted across agricultural systems to 

address similar challenges effectively. 

The main contributions of this paper are as follows: 

1. The development of an enhanced VGG16-based CNN 

architecture tailored for precise and efficient rice 

disease detection. 

2. Integration of data augmentation techniques to 

improve the robustness of the model and generalization 

across diverse datasets. 

3. Demonstration of the proposed method’s superior 

performance through comprehensive experimental 

evaluations, benchmarking it against leading CNN 

models. 

4. Utilization of rigorous experimental analyses and 

standard performance metrics to validate the results 

obtained from the datasets. 
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MATERIAL AND METHODS 

This study employed automated methods to detect 

early signs of rice plant diseases. CNNs play a crucial 

role in this process due to their effectiveness in 

diagnosing plant diseases by accurately classifying and 

recognizing images. The training of CNN models heavily 

depends on the availability of quality data, making data 

accessibility a critical factor. Numerous researchers 

have utilized CNNs for plant disease detection because 

of their proven accuracy. 

Figure 1 depicts the workflow of our proposed approach, 

which was evaluated using a self-generated database. 

For the training and validation tests, we employed pre-

trained CNN models alongside a custom VGG model 

specifically designed for this study. Pre-trained CNNs 

leverage spatial correlations between image pixels to 

extract valuable features, enhancing the accuracy of 

image classification tasks. 

 

 

Figure 1. Proposed methodology for rice disease classification. 

 

Classification of rice diseases using deep learning 

The detection and classification of plant diseases, 

including rice diseases, can be effectively achieved using 

deep learning architectures such as DenseNet121 (Huang 

et al., 2017), Inception V3 (Chollet, 2017), VGG16 (Chen 

et al., 2021), and ResNet50 (Rawat et al., 2023). These 

architectures have successfully addressed challenges 

related to visual object recognition and are widely used 

in tasks such as semantic segmentation, image retrieval, 

video classification, region-of-interest extraction, and 

image indexing. Their effectiveness is largely attributed 

to transfer learning and fine-tuning of parameters. 

In a study focused on rice disease classification, 

DenseNet121, Inception V3, ResNet50, and VGG16 were 

compared, with the customized VGG model serving as a 

benchmark. DenseNet121 enhances classification tasks 

through the iterative concatenation of feature maps 

across layers, ensuring efficient feature reuse and 

improved gradient flow. Inception V3, part of Google’s 

third generation of deep learning architectures, consists 

of 48 layers and incorporates the Softmax function in its 

final layer for classification. 

ResNet50, or Residual Network, introduces residual 

layers and skip connections to address the vanishing 

gradient problem commonly observed in deep neural 

networks. This architecture enables the training of very 

deep networks without performance degradation. 

Finally, VGG16 is distinguished by its 16 layers, 

composed predominantly of small 3 × 3 convolutional 

filters, making it highly effective for image classification 

and feature extraction. 

Data set description 

The primary objective of this research was to collect data 

to identify rice diseases prevalent in Pakistan. The dataset 

comprises a combination of real-time images captured 

from rice crops and a selection of images sourced from 

existing databases. A small number of images for the 

healthy rice class were obtained from the Kaggle dataset 

(Riyaz, 2023) and the Plant Village dataset (Hughes and 

Salathe, 2015), as illustrated in Figure 2. 
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To enhance model robustness, the dataset underwent 

pre-processing and augmentation to increase variability. 

It includes 3,611 high-resolution, full-color images with 

diverse backgrounds and sizes. Each class is represented 

by more than 500 images, ensuring balanced coverage of 

disease categories. 

The dataset was divided into training, validation, and 

testing sets using a 70:20:10 split ratio, resulting in 

2,527 training images and 1,084 images for validation 

and testing, as detailed in Table 2. Examples of diseased 

leaves, including bacterial leaf blight, brown spot, leaf 

blast, sheath blight, and healthy rice leaves, are shown in 

Figure 3 (a), (b), (c), (d), and (e), respectively. 

The model demonstrated high performance on both 

validation and testing sets, indicating that the dataset 

size was sufficient for effective training and evaluation. 

The balanced representation of diseases and the 

implementation of advanced pre-processing techniques 

contributed to the ability of the model to generalize 

effectively. 

 

 
Figure 2. Rice disease dataset development. 

 
 

Figure 3. Class-wise dataset: (a) Bacterial leaf blight, (b) 
Brown spot, (c) Healthy rice leaf, (d) Leaf blast, (e) 
Sheath blight. 

 

Table 2. Class wise distribution of rice disease dataset. 

Disease Total  Training  Validation  
Bacterial Leaf Blight 536 375 161 
Brown Spot 810 567 243 
Healthy Rice Leaf 511 358 153 
Leaf Blast  929 650 279 
Sheath Blight  825 577 248 

 

Pre-processing of data 

Pre-processing is an essential step to enhance specific 

aspects of images required for processing. It plays a 

significant role in improving the accuracy and reliability 

of datasets, which directly impacts the performance of 

machine learning models trained on them. A well-

prepared and cleaned dataset is crucial for various data-

driven investigations, such as rice disease classification 

or other statistical analyses, ensuring precise and 

meaningful outcomes. 

For images downloaded from the internet, pre-

processing was necessary to remove unwanted elements 

a 

b 

c 

d 

e 
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and standardize the data. Techniques such as resizing, 

cropping, sharpening, contrast enhancement, brightness 

adjustment, and Gaussian blur were applied. After pre-

processing, all images were resized to a fixed dimension 

of 224 × 224 pixels, ensuring uniformity for subsequent 

model training. 

Data augmentation 

To expand the dataset size and reduce the risk of 

overfitting, data augmentation techniques were 

employed. These methods enhanced the model’s 

generalization capability while diversifying the training 

data. The applied augmentation techniques included: 

1. Horizontal flipping of images, 

2. Rotating images by 30 degrees, 

3. Applying a height shift range of 0.2, 

4. Applying a width shift range of 0.2, 

5. Zooming and shearing images by a factor of 0.15. 

Methodology for training the proposed model 

To improve generalization, the original model was 

updated by incorporating an additional layer to 

enhance performance monitoring. The updated 

architecture, illustrated in Figure 4, comprises 14 

convolutional layers, 3 fully connected layers, and 5 

max-pooling layers. Key modifications include resizing 

input images to a fixed dimension of 224 × 224 pixels, 

ensuring consistent feature extraction across all inputs. 

The model effectively identifies localized patterns, such 

as edges and textures, through convolution operations 

performed with a fixed kernel size of 3 × 3 (Ritharson 

et al., 2024). Mathematically, the convolution operation 

for an input image I and kernel K is described in 

Equation 1 as: 

 (   )  ∑ ∑  (       )  (   ) 
   

 
    ------- (1) 

Where  (   ) is the output feature map. 

In the convolution process, the kernel traverses the 

image from the top-left to the bottom-right corner, 

extracting features along the way. When the stride value 

is set to 2, the kernel moves two pixels at a time. To 

improve disease identification, convolution layers are 

utilized to extract patterns or features from images. The 

initial convolution layers capture generic features such 

as edges, while subsequent layers identify domain-

specific features. 

After each convolution block, a max-pooling layer down-

samples the feature maps by retaining the most 

prominent features, effectively reducing the image 

dimensions. Convolution layers generate multiple 

feature maps, which are flattened and mapped in the 

classification module using a fully connected layer. In 

this module, the model consists of a feature vector and a 

dense layer. This feature vector is passed to the next 

dense layer, which has the same size. 

Finally, the softmax activation function connects the 

neurons of the last dense layer to the output neurons. As 

described in Equation 2, the softmax function computes 

the probabilities for each class. 

 (   | )  
   

∑     
   

    ------------------- (2) 

Where    represents the logits for class  , and   is the 

total number of classes. 

The soft-max probability function was used to modify 

the output layer to include five classes as a result. The 

sending of data in both directions is necessary for 

learning to occur. The forward pass utilizes the ReLU 

activation function to multiply the input neurons by 

weight values (Zhang et al., 2023). Equation 3 defines 

the activation function for ReLU. 

 ( )      (   )--------- (3) 

The ReLU activation function transforms all negative 

pixel values into positive ones, increasing the model’s 

nonlinearity. During the backward pass, back 

propagation is used to reduce the loss value. The 

convolution operator generates gradients at each 

layer, and the biases and weights are adjusted from 

the final layer to the first. The model contains 

17,074,496 parameters in the convolutional layers. 

Notably, the model is constructed using previously 

trained weights through transfer learning, which 

makes the remaining parameters untrainable. As a 

result, the model is trained with fewer parameters 

and at a faster rate. This approach has been shown to 

enhance classification accuracy for rice disease 

detection. 

Hyper-tuning of parameters 

The fine-tuning process of the model typically involves 

adjusting hyperparameters such as the learning rate, 

batch size, loss function, and the number of epochs. For 

the classification model targeting five classes, different 

values for each hyperparameter within a specified 

range are considered. The development of an effective 

model is the result of numerous experiments. The 

model’s accuracy is significantly influenced by 

variations in the values of these hyperparameters. 

Table 3 presents the hyperparameters used in the 

current experiment, which contributed to achieving 

strong classification accuracy. 
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Figure 4: Architecture of proposed model. 

 

Table 3. Parameters used in the training process. 

Parameter Name Parameter Value 

Batch size 32 

Loss Function  categorical cross-entropy 

Optimizer Adam 

Epochs 80 

Initial learning rate 1 e-3 

 

Experiment setup 

The development process began by using Google Colab 

Notebooks and GPU-enabled computers to create both 

pre-trained and proposed models. After training the 

models for 80 epochs, images from various disease 

categories were used to test their performance. The 

model’s generalization ability was then evaluated by 

assessing its image identification and classification 

capabilities using performance metrics. 

 

RESULTS AND DISCUSSION 

Performance of state-of-the-art deep learning 

models 

A confusion matrix provides an insightful overview of 

the classification model’s performance by comparing 

predicted labels with actual labels in a dataset. It 

illustrates the ratio of correctly predicted positive 

observations to the total predicted positives (precision) 

and the ratio of correctly predicted positive observations 

to all positive observations in the actual class (recall). 

This detailed analysis offers a clear understanding of the 

model’s strengths and weaknesses. 

In machine learning and classification applications, 

confusion matrices are widely used for an unequivocal 

evaluation of the model’s prediction performance. 

Moreover, the classification report complements this 

analysis by including key evaluation metrics such as 

recall, precision, F1-score, and accuracy. 

Table 4 summarizes the effectiveness metrics for the 

pre-trained models evaluated. The confusion matrix 

findings for the five classes of the rice diseases dataset 

are presented in Figure 5(a), (b), (c), and (d), providing a 

visual representation of the classification results. 

The Receiver Operating Characteristic (ROC) curve 

illustrates the classification performance of different rice 

disease types, as shown in Figure 6. The x-axis represents 

the false positive rate, which is the proportion of negative 

instances incorrectly classified as positive. The y-axis 

represents the true positive rate, which measures the 

proportion of actual positive instances correctly identified 

by the model. The ROC graph evaluates the trade-off 

between the false positive and true positive rates, 

providing insights into the model’s ability to distinguish 

between positive and negative classes. 

False positive and true positive rates were used to 

calculate the macro and micro averages for each class, 

enabling a comprehensive evaluation of the model’s 

performance across multiple categories. Moreover, the 

graph provides information on how long each model 

took to train over 80 epochs. Variability in training 

duration was another key factor considered when 

selecting the most suitable models. 
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Figure 5. Confusion matrices for classification models: (a) DenseNet121, (b) Inception V3, (c) ResNet50, and (d) 

VGG16. 

 

Figure 6. ROC curves for different models: (a) DenseNet121, (b) Inception V3, (c) ResNet50, (d) VGG16. 

a b 

c d 

a 
b 

d 

c 
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Table 4. Effectiveness measure analysis of CNN models. 

Model Name Precision  Recall  F1 Score Accuracy  

DenseNet121 0.73 0.75 0.74 74.1% 

Inception V3 0.60 0.59 0.59 60.2% 

ResNet50 0.84 0.82 0.83 82.1% 

VGG 16 0.92 0.93 0.93 93.1% 

 

Proposed model evaluations 

The model was successfully trained using images from 

multiple disease categories over 80 iterations. The 

objective of the training and testing phases was to 

train the model, validate its performance, and assess 

its generalization capability through evaluation 

metrics. The training loss reflects the model’s ability 

to learn from the training dataset. It is calculated by 

determining the difference between the target values 

in the training set and the predicted outputs 

generated by the model. The primary goal of the 

training phase is to minimize the loss, ensuring that 

the model accurately captures the relationship 

between input data and corresponding target outputs. 

In contrast, validation loss measures how well the model 

performs on new, unseen data. It is determined by 

calculating the difference between the actual target values 

in a validation set (or a reserved portion of the training 

data) and the model’s predictions. Validation loss is a 

critical metric for identifying overfitting or underfitting 

and assessing whether the model has captured 

meaningful patterns in the data. 

Table 5 presents the accuracy and loss outcomes for 

both training and validation across various epochs 

(ranging from 10 to 80). Training accuracy improved 

progressively, starting at 91.11% after 10 epochs and 

reaching 98.48% after 80 epochs. Validation accuracy 

showed a range of 91.25% to 96.32% across different 

epochs. As the number of epochs increased, training loss 

steadily decreased, reflecting the model’s enhanced 

learning from the dataset. 

The confusion matrix illustrates the performance of a 

classification model when tested on new data with 

known actual labels. The performance of the confusion 

matrix for each class in the rice disease dataset is 

presented in Table 8. The classification model’s 

performance at various thresholds can be assessed by 

comparing the true positive rate and false positive rate 

on the ROC curve, as shown in Figure 7. The comparison 

results highlight that our customized VGG-16 model 

outperforms other models in terms of generalizing 

transfer learning across different classes of rice diseases, 

as demonstrated in Figure 8. 

Table 5. Training and validation accuracy and loss across epochs. 

Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss 

10 0.9211 0.2296 0.9125 0.3230 

20 0.9594 0.1403 0.9448 0.1850 

30 0.9722 0.0889 0.9632 0.1343 

40 0.9777 0.0761 0.9604 0.1608 

50 0.9843 0.0521 0.9613 0.1694 

60 0.9786 0.0673 0.9687 0.1345 

70 0.9865 0.0512 0.9705 0.1267 

80 0.9848 0.0484 0.9632 0.2145 

Table 8: Performance report of proposed VGG model.  

Disease  Precision  Recall  F1 Score Support 

Bacterial Leaf Blight 0.91 0.97 0.94 161 
Brown Spot 0.97 0.93 0.95 243 

Healthy Rice Leaf 0.99 0.98 0.98 155 

Leaf Blast  0.95 0.97 0.96 279 

Sheath Blight 0.99 0.98 0.98 248 

Accuracy    0.96  
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Figure 7. Confusion matrix and roc of proposed VGG model. 

 

Figure 8. Evaluation of the proposed custom VGG model and pre trained models. 

Additionally, both the VGG-16 and proposed VGG models 

exhibited significant variations during the training phase as 

the number of epochs increased. During this phase, the VGG 

model experienced fluctuations in validation accuracy. In 

the ninth epoch, the validation accuracy unexpectedly 

dropped to 0.57 (57%), while the loss increased to 2.40. 

However, by the end of the training, the accuracy improved 

to 93%, as shown in Figures 9(a) and 9(b), and then 

stabilized at 0.7656 in the subsequent iteration. In contrast, 

the proposed VGG model demonstrated a steady increase in 

accuracy over time, ultimately achieving a final average 

accuracy without any sudden spikes. 

The proposed model demonstrated superior performance 

with the incorporation of an additional layer for improved 

feature extraction. However, certain limitations could 

affect its performance. If the dataset used for training is 

small or of poor quality, such as blurry images or 

incorrect labels, the model may struggle to learn 

effectively and may fail to identify diseases accurately. 

Additionally, if the dataset is imbalanced, with more 

images of one disease than others, the model might 

become biased towards predicting the rarer diseases. 

Resizing images to a fixed size could result in the loss of 

crucial details, particularly when disease signs are very 

small. Furthermore, since the model uses pre-trained 

weights, it may not fully adapt to the unique features of 

rice diseases, especially if these features were not present 

in the original training data. Enhancing the dataset and 

testing the model under more diverse conditions could 

help mitigate these issues. 

0

0.4

0.8

1.2

DenseNet121 Inception V3 ResNet50 VGG 16 Proposed VGG
Model
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Figure 9: (a)Training, validation Accuracy of Proposed VGG Model (b) Training and validation accuracy of VGG Model 

(c) Training, validation loss of Proposed VGG Model, and (d) Training and validation accuracy for VGG 16. 

 

CONCLUSION 

This study demonstrates that Convolutional Neural 

Networks (CNNs) and deep learning techniques can 

effectively detect and classify diseases affecting rice 

plants at an early stage. The proposed custom VGG 

model proved to be highly effective, achieving a 96% 

increase in accuracy, along with the highest precision 

and recall scores. Our method for diagnosing plant 

diseases is both rapid and reliable, as it successfully 

identifies and classifies four distinct disease categories 

in addition to healthy rice plants. Five transfer models 

were selected and retrained with a focus on real-time 

deployment, considering factors such as parameter size 

and model complexity. The customized VGG model 

outperformed all other models in terms of accuracy, 

recall, and precision. This model’s robust performance 

can be applied to various agricultural scenarios, enabling 

the classification of crop diseases based on severity. 

This research holds significant implications for 

agriculture by aiding farmers in early disease detection 

and enabling timely interventions to mitigate crop 

losses. The findings will have a substantial impact on the 

development of precision agriculture. 

In the future, the custom VGG model can be adapted to 

address multiple crop diseases, leading to more effective 

and efficient tools for crop disease detection. The 

adoption of deep learning techniques has the potential 

to greatly enhance crop production and quality. 
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