Latyr Diouf, Zhaoe Pan, Shou-Pu He, Wen-fang Gong, Richard Magwanga, Xiongming Du


Cotton is a moderately salt-tolerant crop, but its salt tolerance threshold is not more than 7.7 ds·m−1. The seedling stage of cotton is the highly sensitive to salinity and the effects can be quantified by measuring morphological and physiological traits. The purpose of this study was to identify QTLs related with salinity tolerance at seedling stage. Meanwhile where they were localized in the genome, investigate the relationships between the traits at seedling stage under salt and to find candidate genes related with salt tolerance. To achieve this goal, two upland cotton accessions mainly cultivated in China; CCRI-35 (Source: 132062) tolerant to salinity as female parent and Nan Dan Ba Di Da Hua: NH (Source: 130549) sensitive to salinity as male parent and their 277 offspring F2:3 population have been used. Our experiment revealed 05 consistent QTLs found in at least two environments. Only 02 major QTLs with high phenotypic variation explained by a single QTL, R2 (%), and high percentage of heritability, HB (%), values were detected on chromosome Chr1 and Chr 7/ Chr16.These QTLs explained phenotypic variation from 5.7 to 60.03 %. Broad sense heritability was high for SL (83.1%) and moderate for GR (68.4). These 02 major QTLs and the 26 genes identified in this study could be used in cotton breeding program and with few obstacles.


genes; cotton; markers; salinity; tolerance; location

Full Text:



Abeer, A. R., A. F. Fatma and M. H. Afaf. 2013. Physiological and biochemical responses of salt-tolerant. J Biol Earth Sci 3(1 ): B72-B88.

Afzal, I., A. Butt, H. Rehman, S.M.A. Basra and A. Afzal. 2012. Alleviation of salt stress in fine aromatic rice by seed priming. . Australian Journal of Crop Science, 6: 1401-1407.

Almodares, A., M.R. Hadi and B. Dosti. 2007. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. . Journal of Biological Sciences, 7: 1492-1495.

Ashraf, M. 1994. Breeding for salinity tolerance in plants. Cri. Rev. . Plant Science, 13: 17-42.

Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora, 199: 361-376.

Azevedo-Neto, A. D., J. T. Prisco, J. Eneas-Filho, C. E. Bragade-Abreu and E. Gomes-Filho. 2006. Effect of salt stress on antioxidive enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exper Bot, 56: 87-94.

Barr, H. D. and P. E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. . Aust. J. Biol. Sci., 15: 413-428.

Bhaskar, G. and B. Huang. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. . International Journal of Genomics, : 1-18.

Diego, A. M., A. O. Marco, A. M. Carlos and C. Jose. 2003. Photosynthesis and activity of superoxide dismutase. Environmental and Experimental Botany, 49: 69-76.

Du, X., S. J. ling and e. al. 2012. Current Situation and the Future in Collection,Preservation,Evaluation. Plant Genetic Resources, 13(2): 163-168.

Duval, M., T. F. Hsieh, Y. Kim and L. Thomas. 2002. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant molecular biology, 50: 237-248.

Elouaer, M. A. a. C. H. 2012. Seed priming to improve germination and seedling growth of safflower (Carthamus tinctorius) under salt stress. . EurAsian Journal of BioSciences 6: 76-84.

Gao, P., Bai, X., Yang, L., Lv, D., Li, Y., Cai, H., et al. 2010. Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. . Planta, 231: 991–1001.

Gouia, H., M. H. Ghorbal and B. Toutaine. 1994. Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiology 105: 1409–1418

Greathouse, G. 1938. Conductivity measurements of plant SAP Plant Physiology., 13(3): 553-569.

Guo, Y. F. and S. A. Gan. 2006. a NAC family transcription factor, has an important role in leaf senescence. Plant J, 46: 601–612.

Hanif, M., E. Noor and N. Murtaza. 2008. Assessment of variability for salt tolerance at seedling stage in Gossypium hirsutum L. J Food Agric Environ, 6: 134–138.

Hao, Y. J., W. Wei, Q. Song, H. W. Chen, Y. Q. Zhang and F. Wang, et al. 2011. NAC Soybean transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant journal : for cell and molecular biology, 68:302–13.

Hoagland, D. a. and D. Arnon. 1950. The water-culture method for growing plants without soil. California Experiment Station Circular No. 347. The College of Agriculture, University of California, Berkeley.

Jamil, M. a. E. S. R. 2004. The effect of salinity on germination and seedling of sugarbeet (Beta vulgaris L.) and cabbage (Brassica oleracea L.) Korean Journal of Plant Protection, 7: 226-232.

Jiang, Y. and B. Huang. 2001. Drought and stress injury to two cool-season turf grasses in relation to antioxidant metabolism and lipid peroxidation. . Crop Sci, 41: 436-442.

Khan, M. A. and S. Gulzar. 2003. Germination responses of Sporobolus ioclados: A saline desert grass. . Journal of Arid Environments 55: 453-464.

Koca, H., M. Bor, F. Özdemir and I. Türkan. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars Environ Exper Bot, 60: 344-351.

Lacape, J. M., T. B. Nguyen, B. Courtois, J. L. Belot, M. Giband and J. P. Gourlot, et al. 2005. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generation. . Crop Sci- ences., 45: 123–140.

Lander, E. and L. Kruglyak. 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature genetics, 1: 1241–1247.

Liang, QingZhi, Hu, Cheng, Hua, Hua, Li, ZhaoHu, Hua and JinPing. 2013. Construction of a linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Chinese Science Bulletin, 58: 3233-3243.

Maas, E. a. and G. Hoffman. 1977. Crop salt tolerance-current assessment. . Journal of the irrigation and drainage division 103: 115–134

Madhava, R. K. V. and T. V. S. Sresty 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. , 1 57: 11 13-11 28.

Marlon, J. R. d. S., E. F. Tamires, D. Sofia , Paula, Ana, Maia Paiva, Tecchio and e. a. Marco Antonio. .2016. Phenology, yield and fruit quality of four persimmon (Diospyros kaki L.) cultivars in So Paulos Midwest countryside, Brazil. . African Journal of Agricultural Research, 11(52): 5171-5177.

Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167: 645-663.

Munns, R. 2007. Utilizing genetic resources to enhance productivity of salt-prone land. CAB Rev 009: 1–11.

Nadarajan, N. 2005. Quantitative genetics and biometrical techniques in plant breeding. Kalyani Publication, New Delhi.

Oluoch, G., J. Zheng, X. Wang, M. K. R. Khan, Z. Zhou, X. Cai, C. Wang, Y. Wang, X. Li, H. Wang, F. Liu and K. Wang. 2016. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica, 209: 223-235.

Paterson, A. H., C. Brubaker and J. F. Wendel 1993. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 11: 122–127.

Prabha, S., A. Vignesh and K. Murugesan. 2014. Biological control of damping off and stem rot of tomato (Lycopersicon esculentum Mill.) using an antagonistic actinomycete, Saccharopolyspora sp. International Journal of Agricultural Science and Research (IJASR), 4: 55-65.

Rahman, M., U.A. Soomro, M.Z. Haq and S. Gul. 2008. Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Sciences 4: 398-403.

Ranty, B., Aldon, D., and Galaud, J.-P. 2006. Plant calmodulins and calmodulin- related proteins: multifaceted relays to decode calcium signals. . Plant Signal.Behav, 1: 96–104.

Rushton, D. L., Tripathi, P., Rabara, R. C., Lin, J., Ringler, P., Boken, A. K., et al. 2012. WRKYtranscription factors: key components in abscisic acid signalling. Plant Biotechnol. J, 10: 2-11.

Saba, J., M. Moghaddam, K. Ghassemi and M. R. Nishabouri. 2001. Genetic properties of drought resistance indices. J Agric Sci Technol 3: 43–49.

Satheesh, V., P. T. K. Jagannadham, P. Chidambaranathan, P. K. Jain and R. Srinivasan. 2014. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis regulatory element analysis in pigeonpea (Cajanus cajan (L.)Millsp.). Mol Biol Rep, 73: 41:7763.

Stam, P., and and J. W. v. Ooijen. 1995. JoinMap™ version 2.0: software for the calculation of genetic linkage maps. . Wageningen: CPRO-DLO.

Stuber, C. W., M. D. Edwards and J. F. Wendel. 1987. Molecular marker facilitated investigations of quantitative trait loci in maize.II. Factors influencing yield and its component traits. Crop Sci Rep, 27: 639–648.

Sun, D. L., J. L. Sun, Y. H. Jia and Z. Y. Ma , Du , X.M. 2009. Genetic diversity of colored cotton analyzed by simple sequence repeat markers. International Journal of Plant Sciences: 170:176–182.

Team, R. D. C. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

Tester, M. and R. Davenport. 2003 Na+ tolerance and Na+ transport in higher plants. Annals of Botany (London), 91 503-527.

Thengane, Gholamhossein Hosseini and R. J. 2007. Salinity tolerance in cotton genotypes. International Journal of botany 3(1): 48-55.

Uma, M. S., Y. Shailesh , D. Shilpi , J. R. P, N. D. M, A. R. K and K. Arvind 2017. QTL Hotspots for Early Vigor and Related Traits under Dry Direct-Seeded System in Rice (Oryza sativa L.). Frontiers in plant science.

Volkmar, K. M., Y. a. Hu and H. Steppuhn. 1998. Physiological response of plants of salinity. A Rev. Can. J.Plant, 78: 19-27.

Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. . The Journal of heredity, 93 (1): 77-78.

Wang, N., Y. Zheng, H. Xin, L. Fang and Li 2013. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep, 32: 61–75.

Wang, S. and Z. B. Zeng 2007. Department of Statistics. North Carolina State University, Raleigh, NC. Windows QTL Cartographer 2.5. .

Wang, X., B. M. Basnayake, H. Zhang, G. Li, W. Li , N. Virk, T. Mengiste and F. Song. 2009. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant Microbe Interact, 22(10): 1227-1238.

Zhang, T., Y. Hu, W. Jiang, L. Fang, X. Guan, J. Chen, J. Zhang, C. A. Saski, B. E. Scheffler, D. M. Stelly, A. M. Hulse-Kemp, Q. Wan, B. Liu, C. Liu, S. Wang, M. Pan, Y. Wang, D. Wang, W. Ye, L. Chang, W. Zhang, Q. Song, R. C. Kirkbride, X. Chen, E. Dennis, D. J. Llewellyn, D. G. Peterson, P. Thaxton, D. C. Jones, Q. Wang, X. Xu, H. Zhang, H. Wu, L. Zhou, G. Mei, S. Chen, Y. Tian, D. Xiang, X. Li, J. Ding, Q. Zuo, L. Tao, Y. Liu, J. Li, Y. Lin, Y. Hui, Z. Cao, C. Cai, X. Zhu, Z. Jiang, B. Zhou, W. Guo, R. Li and Z. J. Chen. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 33: 531-537.


  • There are currently no refbacks.

Copyright (c) 2017 Latyr Diouf, Zhaoe Pan, Shou-Pu He, Wen-fang Gong, Richard Magwanga, Xiongming Du

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Journal of Plant Breeding and Genetics
ISSN: 2305-297X (Online), 2308-121X (Print)
© EScience Press. All Rights Reserved.