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A B S T R A C T 

This paper uses an asset-liability management model to solve multi-period investment problems. The model aims to 
maximize the overall revenue and deal with uncertainties as well as with risks. The assumption of a linear utility 
function may lead to allocation of the wealth to one asset. This paper sheds some light on this issue by showing that 
the linear function can be a risky choice. For this purpose to solve multi-period investment problem we used two 
ways: first, using a piecewise linear function; and second using a non-linear utility function. The results show that the 
non-linear function outperform the piecewise linear function and generates better asset allocation. The problem is 
formulated by using the Wolfram Mathematical Programming System. 

Keywords: Asset-liability management model (ALM), linear and nonlinear utility function, portfolio optimization 
and multi period asset allocation. 

INTRODUCTION 

The Asset-Liability Management (ALM) problem has 

crucial importance to pension funds, insurance 

companies and banks where business involves large 

amount of liquidity. Indeed, the financial institutions 

apply ALM to guarantee their liabilities while pursuing 

profit. The liabilities may take different forms: pensions 

paid to the members of the scheme in a pension fund, 

savers’ deposits paid back in a bank, or benefits paid to 

insurers in the insurance company. A common feature 

of these problems is the uncertainty of liabilities and 

the resulting risk of underfunding. The other major 

uncertainty originates from asset returns. Together 

they constitute a nontrivial difficulty in how to manage 

risk in the model applied by the financial institution. 

The need for multi-period planning additionally 

complicates the problem. 

Stochastic programming provides a general purpose-

modeling framework, which captures the real-world 

features such as turnover constraints, transaction costs, 

risk aversion, limits on groups of assets and other 

consideration. However, the optimization model turns 

out to be intractable for the enormous number of 

 

decision variables, especially for the multi-stage 

problems. One of the first industrially applied models of 

this type was the stochastic linear program with simple 

recourse developed by Kusy and Ziemba in 1986. This 

model captured certain characteristics of ALM 

problems: it maximized revenues for the bank in the 

objective under legal, policy, liquidity, cash flow and 

budget constraints to make sure that deposit liability is 

met as much as possible. Under computational limits at 

the time when it was developed, this model took the 

advantage of stochastic linear programming so as to be 

practical even for the large problems faced in banks. 

In this paper we demonstrate how ALM model can be 

applied for asset allocation in financial markets. We 

assume a very simple model with tree “assets”; stock A 

and Stock B and bonds.  

Moreover, it is important for decision makers to 

rebalance the portfolio during the investment period as 

they may wish to adjust the asset allocations according 

to updated information on the market. The strategy 

which is currently optimal may not be optimal any 

more as the situation changes. Thus, it is important to 

reconsider the strategy and make the necessary 

changes in order to remain in the optimal position. 

Taking this into account, the investor is allowed to 

rebalance annually using the new information at the 
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Figure 1: A scenario tree for a multi-stage stochastic 

program. 

end of each period.  In order to allow different decisions 

thought the investing process a multi-stage ALM model 

is used. 

To make it easier to model, we consider the problem 

stage by stage and with portfolio rebalancing done at 

the beginning of each stage. Also, the uncertainties of 

asset returns are implemented with discrete 

distributions, in which case an event tree is used to 

capture the uncertainties in multiple stages throughout 

the whole decision process, e.g. as shown in Figure 1. 

The nodes at each stage represent possible future 

events. Asset returns, liabilities and cash deposits are 

subject to uncertain future evolution. Meanwhile, the 

asset rebalancing is done after knowing which values 

the asset returns and liabilities take at each node. 

The paper is organized as follows: in Section 2 we 

provide a classification of the more recent life-cycle 

asset allocation models based on the type of available 

solutions. Section 3 describes the stochastic 

programming model, in particular the formulation of 

the objective, the optimization approach using 

piecewise linear utility function and nonlinear utility 

function, and the generation of scenarios. In Section 4, 

numerical results from the ALM model are compared 

and Section 5 concludes our study. 

OVERVIEW OF ASSET ALLOCATION MODELS 

The classical treatments of strategic asset allocation can 

be traced back to Samuelson (1969) and Merton (1969, 

1971). In the light of Markowitz’(1952)  paper  on 

single-period portfolio selection, the early literature 

focused on conditions leading to the optimality of 

myopic policies, i.e., conditions under which portfolio 

decisions for multi-period problems coincide with 

those for single period problems. In addition, the lack of 

computing power leads to formulate models driven by 

the quest for closed form solutions. To achieve these 

objectives, rather restrictive assumptions were made, 

and many of these models’ results turned out to be 

inconsistent with conventional wisdom as expressed by 

the so-called Samuelson puzzle:  the optimal allocation 

does not depend on the investor’s horizon and the 

investor with power utility who rebalances his portfolio 

optimally should choose the same asset allocation. This 

contradicts the advice obtained from many 

professionals in practice that investors should hold a 

share of risky assets because they look relatively less 

risky as they approach retirement (often called the age 

effect). 

Since then, many researchers have tried to resolve this 

puzzle which is mainly rooted in some of the 

(simplifying) assumptions used in early models (fixed 

planning horizon, time-constant investment 

opportunities, no intermediate consumption, etc.). 

Research in the area of life-cycle asset allocation 

models regained momentum in the early 1990s for two 

main reasons: first, a number of economic factors 

increased the number of people with sizeable wealth to 

invest (the “generation of heirs”), coupled with 

increased uncertainty about the security of public 

pension systems. Second, the enormous increase in 

computer power enabled the solution of models with 

more realistic assumptions. A number of additional 

features have been added to the classical models, in 

many cases with the goal of resolving the Samuelson 

puzzle: stochastic labor income, time-varying 

investment opportunities, parameter uncertainty (with 

and without learning), special treatment of certain 

asset classes (real estate), and habit formation, to name 

just the most important developments. 

In contrast to other approaches in the literature using 

non-linear optimization (see, e.g., Blomvall and 

Lindberg 2002; Gondzio and Grothey 2007), we use 

multi-period stochastic linear programming (SLP) to 

solve the problem of optimal life-cycle asset allocation 

and consumption. This method has been explicitly 

chosen with the practical application of the approach in 

mind. Many features which are considered important 

for investment decisions in practice can be easily 

incorporated when using SLP. For example, personal 

characteristics of the investor can be taken into account 

(e.g., mortality risk, risk attitude, retirement, future 

cash flows for major purchases or associated with other 
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life events). Combined with the availability of efficient 

solvers, this explains why the SLP approach has been 

successfully applied to a wide range of problems (see, 

e.g., Wallace and Ziemba 2005). To nest classical 

analytical results from this area within our model, we 

maximize expected utility of consumption over the 

investor’s lifetime and expected utility of bequest 

rather than other objectives which can be implemented 

more easily (e.g., piecewise linear or quadratic penalty 

functions, or minimizing CVaR). 

An important reference for the present paper is 

Campbell et al. (2003). They model asset returns and 

state variables as a first-order vector autoregression 

VAR(1) and consider Epstein–Zin utility with an infinite 

planning horizon. Additional assumptions include the 

absence of borrowing and short-sale constraints. 

Linearizing the portfolio return, the budget constraint, 

and the Euler equation, they arrive at a system of 

linear-quadratic equations for portfolio weights and 

consumption as functions of state variables. This 

system of equations can be solved analytically, yielding 

solutions which are exact only for a special case (very 

short time intervals and elasticity of intertemporal 

substitution equal to one), and accurate 

approximations in its neighbourhood. 

The SLP used in the present paper has been applied 

successfully to a number of related problems. To cite 

only a few examples, there are applications in insurance 

(Cariño and Ziemba 1994, 1998; Cariño et al. 1998), 

and the pension fund industry (e.g., Gondzio and 

Kouwenberg 2001). Zenios (1999) surveys large-scale 

applications of SLP to fixed income portfolio 

management. General aspects of applying such models 

in a strategic asset allocation context are discussed in 

Ziemba and Mulvey (1998), Pflug and Swietanowski 

(2000), Gondzio and Kouwenberg (2001), Wallace and 

Ziemba (2005), and Geyer and Ziemba (2007). 

Particular aspects that are relevant in a life-cycle 

portfolio context are discussed in Geyer et al. (2007). 

A MULTISTAGE MODEL: ASSET- LIABILITY 

MANAGEMENT 

The best way to introduce multistage stochastic model 

is a simple asset liability management (ALM) model 

(Birge and Louveaux 1967). We have an initial wealth 

W0 that should be properly invested in  a way to meet a 

liability L at the end of the planning horizon H. 

If possible, we would like to own a terminal wealth WH 

larger than L; however, we should account properly for 

risk aversion, since there could be some chance to end 

up with a terminal wealth that is not sufficient to pay 

for the liability, in which case we will have to borrow 

some money. 

A nonlinear, strictly concave utility function of the 

difference between the terminal wealth WH, which is a 

random variable, and the liability L would do the job, 

and this would lead to a nonlinear programming model. 

In this paper we will present two alternatives of 

modelling the portfolio decisions for multi-period 

problems. As a first alternative, we can build a 

piecewise linear utility function like the one illustrated 

in Figure 2. 

 
Figure 2: Piecewise Linear Utility Function. 

And as a second alternative, we can build a nonlinear 

utility function like the one illustrated in Figure 3. 

The utility is zero when the terminal wealth WH 

matches the liability L exactly. If the slope r penalizing 

the shortfall is larger than reward rate (q), this function 

is concave (but not strictly). The portfolio consists of a 

set of 3 assets. For simplicity, we assume that we may 

rebalance it only at a discrete set of time instants t = 1, 

... , H-1, with no ransaction cost; the initial portfolio is 

chosen at time t = 0, and the liability must be paid at 

Time H. 

 
Figure.3 The Nonlinear Utility Function.
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Time period t is the period between time instants t - 1 

and t. In order to represent uncertainty, we may build a 

tree like that in Fig. 4. , which is a generalization of the 

two-stage tree. Each node nk in the tree corresponds to 

an event, where we should make some decision. We 

have an initial node n0 corresponding to time t = 0. 

 

 
Figure 4. Scenario tree for a simple asset- liability 

management problem. 

Then, for each event node, we have two branches; each 

branch is labelled by a conditional probability of 

occurrence, P(nk|ni), where ni = a(nk) is the immediate 

predecessor of node nk. Here, we have two nodes at 

time t = 1 and four at time t = 2, where we may 

rebalance our portfolio on the basis of the previous 

asset returns. 

Finally, in the eight nodes corresponding to t = 3, the 

leaves of the tree, we just compare the terminal wealth 

with the liability and evaluate the utility function. Each 

node of the tree is associated with the set of asset 

returns during the corresponding time period. A 

scenario consists of an event sequence, i.e., a sequence 

of nodes in the tree, along with the associated asset 

returns. We have 8 scenarios in Fig. 4. For instance, 

scenario 2 consists of the node sequence (n0, nl, n3, 

n8). The probability of each scenario depends on the 

conditional probability of each node on its path. If each 

branch at each node is equally probable, i.e., the 

conditional probabilities are always 1/2, each scenario 

in the figure has probability ps = 1/8, for s = 1, ...,8. The 

branching factor may be arbitrary in principle; the 

more branches we use, the better our ability to model 

uncertainty; unfortunately, the number of nodes grows 

exponentially with the number of stages, as well as the 

computational effort. 

At each node in the tree, we must make a set of 

decisions. In practice, we are interested in the decisions 

that must be implemented here and now, i.e., those 

corresponding to the first node of the tree; the other 

(recourse) decision variables are instrumental to the 

aim of devising a robust plan, but they are not 

implemented in practice, as the multistage model is 

solved on a rolling-horizon basis. This suggests that, in 

order to model the uncertainty as accurately as possible 

with a limited computational effort, a possible idea is to 

branch many paths from the initial node, and less from 

the subsequent nodes. Each decision at each stage may 

depend on the information gathered so far, but not on 

the future; this requirement is called a non-

anticipatively condition. Essentially, this means that 

decisions made at time t must be the same for scenarios 

that cannot be distinguished at time t. 

To build a model ensuring that the decision process 

makes sense, we can associate decision variables with 

nodes in the scenario trees and write the model in a 

way that relates each node to its predecessors. 

Let us now introduce the following numerical data: 

• The initial wealth is Wo=50. 

• The target liability is Ls100. 

• There are three assets, say, stocks A and B, and bonds; 

hence, I = 3. 

• In the scenario tree of Fig. 4. we have up- and down-

branches; in the (lucky) up-branches, total return is 

1.28 for stock A, 1.40 for stock B and 1.20 for bonds; in 

the (bad) down-branches, total return is 1.08 for stock 

A, 0.99 for stock B and 1.12 for bonds. We see that 

bonds play the role of safer assets, and stocks B are 

very risky assets here. According to Barberies (2000), 

when asset returns are modelled as i.i.d. the mean and 

variance of cumulative log returns grow linearly with 

the investor’s horizon. 

• The reward rate q for excess wealth above the target 

liability is 1. 

• The penalty rate r for the shortfall below the target 

liability is 4. 

Let us introduce the following notation: 

• N is the set of event nodes; in our case 

N = {n0, n1, n2, …, n14} 

• Each node n Є N, apart from the root node n0, has a 

unique direct predecessor node, denoted by a(n): for 

instance, a(n3) = n 

• There is a set S ∩N of leaf (terminal) nodes; in our 

case 

S = {n7, …, n14} 

 • For each node s Є S we have surplus and shortfall 

variables ws+ and ws_, related to the difference 

between terminal wealth and liability. 
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• There is a set T ∩ N of intermediate nodes, where 

portfolio rebalancing may occur after the initial 

allocation in node no; in our case 

T = {n1, n2, …, n6}  

• For each node n Є{n0} U T there is a decision variable 

xin, expressing the money invested in asset i at node n. 

With this notation, the model may be written as 

follows: 

   ∑           
 
 

   
 
 

--------------------------------(1) 

such that: ∑   
   

  
 

   ---------------------------------(2) 
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where Ri
n is the total return for asset i during the 

period that leads to node n, and πs is the probability of 

reaching the terminal node s Є S; this probability is the 

product of all the conditional probabilities on the path 

that leads from root node no to leaf node s. 

NUMERICAL RESULTS 

a. Piecewise Linear Utility Function: Recall that when 

asset returns are modelled as i.i.d., the mean and 

variance of cumulative log returns grow linearly with 

the investor’s horizon (Barberies,2000). This leads an 

investor who rebalances his portfolio to choose the 

same asset allocation (see Table 1). These results 

suggest that analyses of dynamic strategies in which the 

uncertainty in not accurately represented should be 

interpreted with some caution. A possible solution is to 

branch many paths from the initial node, and less from 

the subsequent nodes or a more accurate 

representation of utility with more linear pieces. 

Table 1. Investment strategy for a simple ALM problem 

with piecewise utility function. 

Node Stock A Stock B Bonds 

n0 16.89 33.12 0 

n1 67.97 0 0 

n2 0 51.02 0 

n3 0 0 87.01 

n4 23.12 50.29 0 

n5 0 71.43 0 

n6 0 50.51 0 

The Nonlinear Utility Functions 

When we are approximating a nonlinear utility function 

by a piecewise linear function, the portfolio is not 

diversified and the wealth in the last time period is 

allocated to one asset (see Table 1). Actually, this 

alternative may imply “local” risk neutrality, so that we 

only care about expected return.  

The uncertainty about the parameters may change over 

time. Therefore, the investment opportunity set 

perceived by the investor may change over time. To 

study the importance of uncertainty in a dynamic 

context we use the nonlinear programming model. As a 

result, the investor’s are suggested to allocate their 

wealth in all assets (see Table 2). Using nonlinear utility 

function the objective of the optimization problem 

becomes: 

   ∑           
 
 
     

 
 
  ----------------------------(6) 

Table 2. Investment strategy for a simple ALM problem 

with nonlinear utility function 

Node Stock A Stock B Bonds 

n0 0 50 0 

n1 0 70 0 

n2 21.96 11.70 15.84 

n3 0 98 0 

n4 39.52 0 29.78 

n5 35.37 4.48 23.65 

n6 23.53 21.15 8.36 

CONCLUSION 

In the paper special emphasis was put on the shape of 

the investors’ payoff functions in asset price 

equilibrium. The assumption of a linear utility function 

may imply “local” risk neutrality, so that we only care 

about expected return, resulting allocation of the 

wealth to one asset. When the asset returns are models 

as i.i.d. with piecewise utility function, then regardless 

of investment horizon an investor who rebalances his 

portfolio is suggested to choose the same asset 

allocation. On the other hand, when the nonlinear 

utility function is used the investor’s are suggested to 

allocate their wealth in all assets. The results presented 

here suggest that portfolio calculations can be seriously 

misleading if the allocation framework ignores the fact 

that the uncertainty in not accurately represented. 

In our paper we have assumed that the liabilities must 

be met, and this is a very hard constraint. If extreme 

scenarios are included in the formulation, it may well 

be the case that the model above is infeasible. 

Therefore, the formulation should be relaxed in a 

sensible way; we could consider the possibility of 

borrowing cash; we could also introduce suitable 

penalties for not meeting the liabilities.  In principle, we 

could also require that the probability of not meeting 

the liabilities is small enough; this leads to chance-
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constrained formulations, for which we refer the reader 

to the literature (Campbell JY, Viceira LM 2002, Heitsch 

H, Römisch W 2003, Hochreiter R, Pflug GC 2007, 

Klaassen P 2002, Liu J 2007, Wallace SW, Ziemba WT 

(eds) 2005). 
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