INSECTICIDES SUSCEPTIBILITY, ENZYME ACTIVITY AND EXPRESSION OF RESISTANT GENE (GST) IN TWO POTENTIAL MALARIA VECTORS, ANOPHELES JAMESII & ANOPHELES BARBIROSTRIS FROM MIZORAM, INDIA

Khawlhring Vanlalhruaia, Guruswami Gurusubramanian, Nachimuthu S. Kumar

Abstract


Anopheles jamesii and Anopheles barbirostris are the two dominant and potential vectors of malaria in Mizoram. These mosquito populations are continuously being exposed directly or indirectly to different insecticides including the most effective pyrethroids and Dichloro-diphenyl-trochloroethane. Therefore, there is a threat of insecticide resistance development. We subjected these vectors to insecticides bioassay by currently using pyrethroids viz. deltamethrin and organochlorine viz. DDT. An attempt was also made to correlate the activities of certain detoxifying enzymes such as α- esterase, β-esterase and glutathione-S transferase (GST) with the tolerance levels of the two vectors. The results of insecticide susceptibility tests and their biochemical assay are significantly correlated (P<0.05) as there is elevation of enzyme production in increasing insecticides concentrations. Characterization of GSTepsilon-4 gene resulted that An .jamesii and An. barbirostris able to express resistant gene.


Keywords


Index, Anopheles, Control, Malaria, Disease, Mosquitoes, Resistance

Full Text:

PDF

References


Adityaa, G., M.K. Pramanika and G.K. Sahaa. 2006. Larval habitats and species composition of mosquitoes in Darjeeling Himalayas, India. J. Vect. Borne Dis. 43: 7–15.

Bansal, S.K. and K.V. Singh.1996. Insecticide susceptibility status of some Anophelines in district Bikaner, Rajasthan. Indian J.Malariol.33: 1-6.

Centre for Disease Control and Prevention. 2004. Life stages of Anopheles mosquitoes. Morb. Mortal Wkly. Rep.52: 989-997.

Das, B.P., R. Rajagopal and J. Akiyama. 1990. Pictorial key to the species of Indian Anopheline Mosquitoes. J. Pure Appl. Zoo. 2: 131-162.

Fournier, D, Bride, M., Poirie, M., Berge, J.B. and Plapp, F.W, 1992) Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J. Biol. Chem. 267, 1840-1855.

Ganesh, K.N., J. Urmila, P. Guiletand L. Manga. 2003. Pyrethroid susceptibility and enzyme activity in two malarial vector; Anopheles stephensi (Liston) and A. culicifacies (Giles) in Mysore, India. Indian J. Med. Res.117: 30-38.

Grant, D.F. and Hammock, B.D. (1992) Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione S-transferase-2 expression in Aedes aegypti. Mol.Gen. Genet. 234, 169-176.

Grant, D.F. and F. Matsumura. 1989. Glutathione S- transferase 1 and 2 in susceptible and insecticide resistant Aedesaegypti. PesticBiochem.Physiol.33: 132-143.

Harbach, R.E. 2004. The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetical relationships. Bull. Entomol. Res. 95: 537-553.

Hayes, J.D. and C.R. Wolf. 1988. Role of glutathione transferase in drug resistance. In: Sies H, Ketterer B (eds) Glutathione conjugation: Mechanisms and Biological Significance. Academic Press, London, pp. 315-355.

Hemingway, J. and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45: 371-391.

Kostaropoulos, I., M. Papadopoulos, A. Metaxakis, E. Boukouvala and E. Mourkidou. 2001. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem. Mol. Biol. 31: 313-319.

Kadous, A.A., S.M. Ghiasuddin, F. Matsummura, J. G. Scott and K. Tanaka. 1983. Difference in the picrotoxinin receptor between the cyclodiene - resistant and susceptible strains of the German-cockroach. Pesticide Biochem. Physiol.19: 157-166.

Li, X., M.A. Schuler and M.R. Berenbaum. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev.Entomol.52:231-253.

Limrat, D., B. Rojruthai,C. Apiwathnasorn, Y. Samung and S. Prommongko. 2001. Anopheles barbirostris/campestris a probable vector of Malaria in Aranyaprathet, Sa Kaeo province. Southeast Asian J. Trop. Med. Public Health.32: 739-744.

Lowry, O.H., N.J. Rosebrough, A.L. Farrand R.J. Randall.1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.193: 265-75.

Mannervik, B. and U.H. Danielson. 1988. Glutathione transferases – structure and catalytic activity. CRC. Crit. Rev. Biochem. 23: 283–337.

Nagpal, B.N. and Sharma, V.P. 1995. Indian Anophelines. Oxford and IBH Publishing CO. Pvt. Ltd. New Delhi.

National Vector Borne Diseases Control Program Government of India report. 2013. http://www.nvbdcp.gov.in/Doc/mal-situation-Jan13.pdf.

Oo, T.T., V. Storch and N. Becker. 2005. Review of the Anopheline mosquitoes of Myanmar. J. Vector Ecol. 29: 21-40.

Pickett, C.B. and A.Y. Lu. 1989. Glutathione S-transferases: gene structure, regulation, and biological function. Annu. Rev. Biochem. 58: 743-764.

Perera, M.D.B., J. Hemingway and S.H.P. ParakramaKarunaratne. 2008. Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malaria J.7:168-178.

Reuben, R., S.C. Tewari, J. Hiriyan and J. Akiyama. 1994. Illustrated keys to species Culex associated with Japanese Encephalitis in Southeast Asia (Diptera; Culicidae) Mosq. Systematics. 26(2): 75-96.

Revanna, M.A. and V.A. Vijayan. 1993. Insecticide susceptibility of Culexgelidus Theobold, Japanese encephalitis vector, in Mysore. Ann.Entomol.11: 67-70.

Reidy G.F., H.A. Rose, S. Visetson and M. Murray. 1990. Increased glutathione S- transferase activity and glutathione content in an insecticide resistant strain of Triboliumcastaneum(Herbst). PesticBiochem.Physiol.36:269-276.

Senthil Kumar, N., B. Tang, X. Chen, H. Tian and W. Zhang. 2008. Molecular cloning, expression pattern and comparative analysis of chitin synthase gene B in Spodopteraexigua. Com. Biochem. Physiol.149: 401-540.

Vijayan V.A., M.A. Revanna, K.S. Vasudeva, N. Pushpalatha and Poornima. 1993. Comparative susceptibility of two Japanese encephalitis vectors from Mysore to six insecticides. Indian J. Med. Res.97: 215-227.

World Health Organization (WHO). 1998. Techniques to detect insecticide resistance mechanisms (field and laboratory manual).Geneva. (WHO/CDS/CP/MAL/98.6).

World Health Organization (WHO). 2005. Guidelines for laboratory and field testing of Mosquito larvicides. pp.41. (WHO/CDS/WHOPES/GCDPP/2005.13).

World Health Organization (WHO). 1975. Manual on practical entomology in malaria vector bionomics and organization of anti-malaria activities. Part I and part II, Offset Publication No.13, Geneva.

Yang, Y., J.Z. Cheng, S.S. Singhal, M. Saini, U. Pandya and S. Awasthi. 2001. Role of glutathione S-transferases in protection against lipid peroxidation. J. Biol. Chem. 276: 19220-19230.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 International Journal of Entomological Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Entomological Research
ISSN: 2310-3906 (Online), 2310-5119 (Print).
© EScience Press. All Rights Reserved.