MODELLING OF THE RESPIRATION OF THE TUNISIAN BEE APIS MELLIFERA INTERMISSA (BUTTEL REEPEN, 1906) (HYMENOPTERA: APIDAE)

Mohamed Chouchaine, Ahmed G. Abdellaoui, Imen Hmidi, Naima Barbouche, Abdellah Khemiri

Abstract


The modelling of the respiration of the individual Tunisian bee was studied for two variants, the short one P0Q with two haplotypes A1 and A8 and the medium-sized one P0QQ with two haplotypes A4 and A9. This work studied the evolution of the oxygen consumption of 250 bees of each haplotype under different temperatures of 0, 10, 15, 20, 25, 30 and 35°C during 10 minutes. This study shows that the triggering of the thermogenesis process depends on temperature (T) and variant. The medium-sized variant P0QQ consumes more oxygen than the short one in low temperatures of 0°and 10°C. It was proved that for the two variants there was a difference of 5°C in the temperatures for the triggering of thermogenesis. After this activation, the physiological reaction of the individual bee is inversely proportional to temperature. Two mathematical equations have been established for the modelling of the respiration of Apis mellifera intermissa in its stand- alone state. The theoretical work confirms the experimental work with percentage of 92 (±5) % according to the temperatures being tested.


Keywords


Tunisian bee; variant; respiration; modelling

Full Text:

PDF XPS

References


Bruneau, E. 2006. Clefs pour l’alimentation. Besoins alimentaires des abeilles. Abeilles & cie. 4 (113) : 14-17.

Chauvin, R., J. Lafarge and J. Saligot. 1985. L’intervention d’une hormone, la survivone, dans la mortalité des abeilles (Apis mellifera L.) isolées (effet de groupe). Apidologie, 16 (1) : 77-88. DOI: 10.1051/apido:19850108.

Chouchaine, M., N. Barbouche and A. Khemiri. 2015. Etude comparative des paramètres internes du thermopréférendum des haplotypes de l’abeille tellienne tunisienne Apis mellifera intermissa(Buttel Reepen 1906). Livestock Research for Rural Development. 27 :9. http://www.lrrd.org/lrrd27/9/chou27171.html.

Chouchaine, M., N. Barbouche, K. Benachour, A. A. Gazali and A. Khemiri. 2014. Etude de la respiration, a l’état isolé, des haplotypes de l’abeille tunisienne Apis mellifera intermissa (BUTTEL REEPEN 1906) (Hymenoptera: Apidae). Annales de la Société entomologique de France (N.S) 50 (2) : 248-255. DOI:10.1080/00379271.2014.937600.

Chouchaine, M. 2010. Contribution à l’Etude de la Biodiversité des Apoidea en Tunisie. Etude Morphométrique, Moléculaire et Eco-Physiologique de l’Abeille Tunisienne : Apis mellifera intermissa (Buttel–Reepen, 1906) (Hymenoptera : Apidae). Thèse en Science Agronomique, INAT, 205p.

Chouchaine, M., N. Barbouche, A. Saidi and T. S. Allalou. 2007. Etude de niveau d’introgréssion de l’abeille tunisienne par les sous espèces étrangères moyennant l’utilisation du marqueur moléculaire cytoplasmique (ADNmt). Revue de l’INAT 22:149-159.

Crailsheim, K., A. Stabentheiner, N. Hrassnigg and B. Leonhard, 1999. Oxygen consumption at different activity levels and ambient temperatures in isolated honeybees (Hymenoptera: Apidae). Entomologia Generalis 2 : 1-12. DOI: 10.1127/entom.gen/24/1999/1.

Erdogan, Y., A. Dodologluand B. Emsen. 2009. Some Physiological Characteristics of Honeybee (Apis mellifera L.) Housed in Heated, Fan Wooden and Insulated Beehives. Journal of Animal and Veterinary Advances 8 (8): 1516-1519.

Garnery, L. 1992. Variabilité de l’ADN mitochondrial de l’abeille domestique. Implication phylogénétiques. Thèse, Université Paris VI, Paris. 170p.

Heusner, A. and T. H. Stussi. 2005. La thermogenèse chez Apis mellifera L. Abstract. Insectes sociaux, volume (11).

Ken, T., Y. Shuang, W. Zheng-Wei, E. R. Sarah and P. O. Benjamin. 2012. Differences in foraging and broodnest temperature in the honey bees Apis cerana and A. mellifera. Apidologie 43:618–623. DOI: 10.1007/s13592-012-0136-y.

Lenaz, G. 2001. The mitochondrial production of reactive oxygen species: mechanism and implications in human pathology. IUBMB Life 52: 159-164. DOI: 10.1080/15216540152845957.

Lighton, J. R. B. and B. G. Lovegrove. 1990. A temperature-induced switch from diffusive to convective ventilation in the honeybee. Journal of Experimental Biology 154: 509-516. [PDF].

Moffatt, L. 2001. Metabolic rate and thermal stability during honeybee foraging at different reward rates. Journal of Experimental Biology 204: 759-766. JEB3218.

Nachtigall, W., U. Hanauer-Thieser and M. Morz. 1995. Flight of the honeybee. VII. metabolic power versus flight speed relation. Journal of Comparative Physiology 165: 484–489. DOI: 10.1007/BF00261303.

Oliver, R. 2008. Old Bees. Part 2. (Voir:http://www.scientificbeekeeping.com/old-bees-cold-bees-cold-bees-no-bees-part-2).

Patrick Ciarlet, J. R. 2005. Introduction au calcul scientifique. Aspects algorithmiques Cours de l'ENSTA 2ème Année MA261, 120 pages.

Patrick Ciarlet, J. R., H. Wu and Z. Jun. 2014. Edge element methods for Maxwell's equations with strong convergence for Gauss' laws. SIAM Journal on Numerical Analysis, 52: 779-807. http://dx.doi.org/10.1137/120899856.

Petz, M., A. Stabentheiner and K. Crailsheim. 2004. Respiration of individual honeybee larvae in relation to age and ambient temperature. Journal of Comparative Physiology B 174 : 511-518. DOI:10.1007/s00360-004-0439-z.

Ritter, W. 1982. Étude expérimentale de la thermorégulation dans la colonie d’abeilles (Apis mellifera L). Apidologie 13 (2):169-195. http://dx.doi.org/10.1051/apido:19820205.

Rustin, P., D. Chretien and B. Gerard. 1994. Biochemical and molecular investigations in respiratory chain deficiencies. Clinica Chimical Acta, 228:35-51. PMID: 7955428.

Stabentheiner, A., H. Pressl, T. Papst, N. Hrassnig and K. Crailsheim. 2003. Endothermic heat production in honeybee winter cluster. The Journal of Experimental Biology 206: 353-358. DOI: 10.1242/jeb.00082.

Suarez, R., C. Darveau, K. Welch and D. O’brien. 2005. Energy metabolism in orchid bee flight muscles: carbohydrate fuels all. The Journal of Experimental Biology 208: 3573-3579. DOI: 10.1242/jeb.01776.

Suarez, R. K., J. F. Staples and J. R. B. Lighton. 1999. Turnover rates of mitochondrial respiratory chain enzymes in flying honeybees (Apis mellifera). Journal of Experimental Zoology 284: 1-6. DOI: 10.1002/(SICI)1097-010X(19990615)284:1<1::AID-JEZ1>3.0.CO;2-P.

Woods, W. A., B. Heinrich and R. D. Stevenson. 2005. Honeybee flight metabolic rate: does it depend upon air temperature? Journal of Experimental Biology 208: 1161-1173. DOI:10.1242/jeb.01510.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 International Journal of Entomological Research

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

International Journal of Entomological Research
ISSN: 2310-3906 (Online), 2310-5119 (Print).
© EScience Press. All Rights Reserved.